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Abstract 

Perception of environmental change is a prerequisite for adaptation. Thus, it is vital to 

understand how agricultural communities perceive changing rainfall and how perceived rainfall 

changes affect their decision-making process. In South Wollo, in the densely populated 

northern highlands of Ethiopia, small-scale farmers are particularly vulnerable to environmental 

change. Their livelihoods largely depend on rainfed agriculture which makes them reliant on 

relatively stable and predictable rainfall conditions. The rainfall regime is characterized by two 

rainy seasons: the lighter spring rains, locally known as belg, and the main rainy season in 

summer, locally known as kiremt. 

Six kebeles (smallest administrative unit in Ethiopia) in South Wollo were selected using a 

purposive sampling approach. A total of 42 semi-structured household interviews and 18 focus 

group discussions were conducted in the kebeles between November 2017 and February 

2018. During the interviews, information was gathered on the socio-economic composition of 

the household, main activities, land and crop management practices as well as perceived 

changes of rainfall and land degradation, the impacts of these changes and the respondents’ 

strategies to address them. The kebeles were grouped according to the rainy season the 

farmers use for cropping: only belg, only kiremt or both seasons. Changing rainfall perceptions 

were analyzed with regard to what had changed, how it had changed and how it impacted the 

farmers’ daily lives and agricultural activities. An analysis of rainfall trends and rainfall variability 

in the kebeles was performed using daily precipitation estimates from the Climate Hazards 

Group Infrared Precipitation with Stations (CHIRPS) between 1981 and 2017. Rainfall was 

analyzed regarding drought years, rainfall amount, number of rainy days, timing of the rainy 

seasons, rainfall intensity and frequency and intensity of extreme events. The coefficient of 

variation (CV) was used to assess variability and the non-parametric Mann-Kendall trend test 

and Sen’s slope estimator were used to analyze direction and magnitude of trends. 

Respondents perceived decreasing rainfall amounts and a later and increasingly unpredictable 

onset of belg rains. Perceived changes in kiremt were mainly associated with timing, in 

particular an earlier cessation of the rainy season, and decreasing amounts of rainfall. 

Regarding changes in extreme events and rainfall intensity, respondents gave mixed answers. 

Dry spells were hardly mentioned. Analysis of the meteorological data showed a statistically 

significant (p ≤ 0.05) decreasing trend for rainfall amount and an increasingly late onset of belg. 

The duration of belg and the total dry spell length became more variable. For kiremt, increasing 

trends in the amount of rainfall were found in one kebele group and an increasing number of 

rainy days and a decreasing frequency of very wet days in another. The intensity and frequency 

of extreme events during kiremt has become more variable. Overall, respondents cropping 

during belg had perceived changes in rainfall in accordance with the change in meteorological 
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data. Farmers cropping during kiremt had a more negative, sometimes even contradictory 

perception of the changes in rainfall than the precipitation data showed. 

Farmers primary metrics in assessing rainfall are onset, cessation and duration of the 

season(s). The availability of a consistent time series with high spatial and temporal resolution 

in CHIRPS made a detailed assessment of these aspects possible. Not only the amount of 

rainfall matters, but also the distribution of rainfall throughout the season. Farmers perceive 

rainfall in terms of how it affects their agricultural activities. Crop failure may be attributed to 

changing rainfall even though other aspects such as land degradation or declining soil fertility 

This can lead a perception of rainfall decline, even though other aspects may be more 

important drivers. 
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1 Introduction 

1.1 Background 

Since the 1950s, climatic conditions across the earth have been changing at an unprecedented 

speed. On a global scale, the atmosphere and the ocean have warmed, snow, ice and glaciers 

have melted and sea levels have risen with severe impacts on natural and human systems 

(IPCC 2015). In Sub-Saharan Africa, agriculture is largely rainfed and at the same time, the 

agricultural sector makes up a substantial share of the overall economy. On the one hand, this 

makes farmers particularly vulnerable to changes in climate. On the other hand, it puts them 

in a unique position when it comes to observing these changes (Ayanlade et al. 2017; Simelton 

et al. 2013). Since the impacts of changing rainfall, i.e. potential crop loss, are also influenced 

by infrastructural, institutional and technological development as well as poverty, it can result 

in intense pressure on small-scale farmers’ livelihoods (Osbahr et al. 2011; Rockström et al. 

2010; Simelton et al. 2013). 

In Ethiopia, the national economy is particularly sensitive to changes in climate due to its high 

dependency on agriculture (Bryan et al. 2009; Simane et al. 2016). Agriculture, forestry and 

fishing contribute more than 32% to the Ethiopian gross domestic product (FAO 2020). 

Livelihoods largely depend on rainfed agriculture and chronic food insecurity affects 10% of 

the population, which means these households’ food supply cannot meet their needs, even in 

years with average rainfall and they are dependent on food aid (Conway and Schipper 2011). 

In the mountainous terrain in the highlands of Ethiopia, climate conditions and the sensitivity 

of the local population to climate variability can change within just a few kilometers (Simane et 

al. 2016). An improved understanding of how changing climate conditions are perceived by 

agriculture-dependent small-scale farmers is important in the development of policies and 

programs to promote adaptation of the agricultural sector (Bryan et al. 2009). 

Perceptions of environmental change are considered a prerequisite for adaptation. Adaptation 

means the “process of adjustment to actual or expected climate and its effects” (IPCC 2015). 

It depends on whether the impacts of change are perceived as a risk and whether it should 

(and could) be acted upon (Adger et al. 2009; Alessa et al. 2008). The extent to which 

environmental change is perceived locally shapes vulnerability: the level of and support for 

adaptation can vastly alter the impacts of change (Fosu-Mensah et al. 2012; Howe et al. 2014). 

How people think about and perceive environmental change is not necessarily accurate or 

complete. An increasing divide between actual change and perceived change can lead to an 

underestimation of climate risks and a lack of adaptation or maladaptation, which can result in 

severe consequences, especially in regions where much of the population is highly exposed 

(Alessa et al. 2008; Howe et al. 2014; Idrissou et al. 2020; Kosmowski et al. 2016). 
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Small-scale farmers are not only exposed to variable climate conditions, they also observe 

them actively (Ayal and Leal Filho 2017). In fact, agriculture-dependent communities in rural 

areas were found to have a higher level of awareness of locally changing climate conditions 

(Howe et al. 2014; Kosmowski et al. 2016). Farmers draw on personal experience to process 

environmental change and they make analytical statements, e.g. by discussing the merit of 

different adaptation strategies when communicating about climatic conditions (Marx et al. 

2007). They perceive change not necessarily in meteorological terms but rather as it affects 

their agricultural activities. Thus, perceptions are not necessarily determined by long-term 

changes of measurable climate parameters such as rainfall (Bryan et al. 2009; Kosmowski et 

al. 2016). Some climate parameters may be easier to observe by small-scale farmers than 

others and meteorological data and individual perceptions may measure fundamentally 

different constructs. While meteorological data represents people’s exposure to climate 

change, perceptions are linked to experienced climate impacts and adaptive capacity. 

Distinguishing between exposure, impacts and the farming system’s sensitivity to rainfall is 

crucial (De Longueville et al. 2020; Dickinson et al. 2017; Leclerc et al. 2013; Simelton et al. 

2013). 

Both sources, meteorological data and perceptions of local communities, should be used in a 

complementary way rather than assessing which is more “accurate”. Developing solutions for 

climate variability, climate change and its impacts on small-scale farmers’ livelihoods through 

the integration of different knowledge sources can prove to be more beneficial than relying 

exclusively on meteorologically observed changes in climate (Dickinson et al. 2017; Mekonnen 

et al. 2018). After all, regardless of whether the two sources produce concordant results, the 

actions small-scale farmers take in response to the changes they perceive and their 

consequences are real (Meze-Hausken 2004). 

1.2 Literature review 

1.2.1  Perceptions of environmental change 

Most studies on African small-scale farmers’ perceptions of environmental change in general 

and rainfall change in particular conclude that the farmers feel their lives are becoming 

increasingly challenging. In Ethiopia, a majority of farmers were found to perceive a decline in 

the amounts of annual and/or seasonal rainfall (Bryan et al. 2009; Esayas et al. 2019). In 

studies where perceptions of rainfall changes were assessed in more detail, farmers usually 

report increasingly erratic and unpredictable rainfall, with a later onset and an earlier cessation 

of the rainy season(s), increasing rainfall intensity and an increasing occurrence of untimely 

rainfall and drought frequency (Asfaw et al. 2018; Ayal and Leal Filho 2017; Habtemariam et 

al. 2016; Mekonnen et al. 2018; Wagesho and Yohannes 2016). According to the farmers, 

rainfall in the Ethiopian highlands appears to be merging from two distinct into one long season 
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(Cochrane et al. 2020; Meze-Hausken 2004). Farmers in the higher altitude areas seem to be 

more affected than those in the lowlands (Deressa et al. 2011). Temperatures are reported to 

be increasing (Asfaw et al. 2018; Mekonnen et al. 2018). Elsewhere in sub-Saharan Africa, 

changes in the timing and predictability of rainfall are among the most perceived phenomena 

as well (Ayanlade et al. 2017; De Longueville et al. 2020; Dickinson et al. 2017; Idrissou et al. 

2020; Kosmowski et al. 2016; Mkonda and He 2017; Ogalleh et al. 2012; Simelton et al. 2013). 

Higher rainfall variability and higher rainfall intensity, i.e. wet seasons becoming wetter and dry 

seasons becoming drier, have also been perceived (Fosu-Mensah et al. 2012; Salerno et al. 

2019). Whether or not these perceptions are concordant with meteorological data differs 

between study regions, data sources, data quality and time frames. Madhuri and Sharma 

(2020) found in a systematic literature review on perceptions of climate change, that farmers 

perceived changes in temperature are mostly in agreement with meteorological evidence, 

while changes in precipitation were aligned with meteorological evidence in 43 out of 70 

studies.  

The most influential factors in climate and rainfall change perceptions were found to be access 

to information on climate, access to extension services, education, farm location and distance 

to markets, income and farming experience (Ayanlade et al. 2017; Bryan et al. 2009; Debela 

et al. 2015; Deressa et al. 2011; Esayas et al. 2019; Fosu-Mensah et al. 2012; Habtemariam 

et al. 2016; Mainardi 2018; Tesfahunegn et al. 2016).  Perceived causes for changing rainfall, 

if farmers were able to name them, were often identified as deforestation or deistic causes 

(Ayal and Leal Filho 2017; Habtemariam et al. 2016; Mekonnen et al. 2018). The impacts of 

perceived rainfall changes are in many cases reported to be severe. Farmers are increasingly 

confused about planting dates which results in a reduction in crop yield (Asfaw et al. 2018). 

Also, farmers perceive a decline in crop productivity as a result of declining rainfall (Adimassu 

et al. 2014; Adimassu and Kessler 2016). Especially in areas where food insecurity is prevalent 

and vulnerability to climate stress is high, the negative impact of climate and rainfall change 

on agriculture is considered a salient risk to farmers’ livelihoods and economic development 

(Cochrane et al. 2020; Debela et al. 2015). 

Possible discrepancies between perceived and observed environmental change can be 

interpreted in multiple ways. Some studies argue that while rainfall may not have changed 

significantly, the need for and availability of water have. An expansion of the agricultural area 

into marginal lands to produce more crops for a growing population has become common. In 

addition to a reduction in fallow, this has led to increased land degradation, soil erosion and 

lower moisture availability for plant growth and thus reduced productivity (Adimassu et al. 2014; 

Deressa et al. 2011; Meshesha et al. 2012; Meze-Hausken 2004). Higher temperatures and 

higher evapotranspiration may further exacerbate water stress and lead to perceived changes 

in rainfall (Mekonnen et al. 2018; Osbahr et al. 2011). As these factors may result in crop 
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failure, it is likely that farmers perceive agronomic drought rather than meteorological drought. 

To meet the needs of local farmers’ livelihoods, e.g. crop and pasture growth, rainfall must be 

sufficient in amount and distribution over time. In case of a negative rainfall anomaly, the gap 

between rainfall demand and supply widens (Meze-Hausken 2004; Slegers and Stroosnijder 

2008). Also, perception of changing rainfall is dependent on the crops farmers grow. While 

increasing yields were perceived to be the result of improved technologies or better crop 

varieties, decreasing yields were perceived to be caused by changing climate and rainfall 

(Habtemariam et al. 2016). 

Smallholders’ perceptions were found to be driven by changes in rainfall duration and 

distribution rather than quantity, e.g. more erratic or unpredictable rainfall refers to changes in 

the timing of the rainy season (Below et al. 2015; Fosu-Mensah et al. 2012; Roncoli et al. 2002; 

Simelton et al. 2013). Cochrane et al. (2020) highlighted that farmers do not use aggregate 

rainfall or extreme events as their primary metrics, they refer to onset, duration and cessation 

of the rainy seasons instead. In particular in an area where two rainy seasons are perceived 

separately, rainfall is considered based on the agricultural activity calendar. Local farmers are 

more likely to perceive agricultural drought than meteorological drought, i.e. there is a need for 

the optimal amount of rainfall at the right time and minor differences within a season can have 

a major influence on whether or not it is possible to harvest (Ayal and Leal Filho 2017; 

Mekonnen et al. 2018; Rosell and Holmer 2007). The perception of climate change and 

variability is thus expressed in light of the effects on the farmers’ livelihoods (Ogalleh et al. 

2012). 

Also, perceptions are modified by experiential factors. A farmer’s decision-making process is 

influenced by recent events which may drive a belief that climate has changed (Bryan et al. 

2009; Debela et al. 2015; Mertz et al. 2009; Simelton et al. 2013). This can also include the 

weather during the data collection period (Habtemariam et al. 2016). Vivid memories of 

extreme weather events such as severe drought or flooding may also influence perceptions of 

changing rainfall (De Longueville et al. 2020; Howe et al. 2014; Marx et al. 2007; Simelton et 

al. 2013). 

There are shortcomings of different data sources when assessing rainfall change and 

variability as well as perceptions. Using rainfall data from gauge stations is problematic since 

they rarely offer long-term consistent timeseries. Also, especially in areas where spatial 

variability of rainfall is high and gauge stations are rare, using the data from a station that is 

not at the location where the perception data is acquired can cause errors (Adimassu et al. 

2014; De Longueville et al. 2020; Dickinson et al. 2017; Meze-Hausken 2004). Satellite-based 

rainfall estimates can alleviate some of these problems, depending on spatial and temporal 

resolution. 
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A strong focus of extension workers, institutions and non-governmental organizations on 

changing rainfall patterns, climate change and drought may also manifest narratives of change. 

Media stories focused on negative developments further reinforce this development (Below et 

al. 2015; De Longueville et al. 2020; Mertz et al. 2009; Meze-Hausken 2004). Processes of 

identification and affiliation relying on culture, values and beliefs influence the way people 

perceive and talk about climate-related problems. Cognitive limitations can cause a distortion 

of farmers’ memories of how rainfall used to be. Through wishful thinking consistent with 

decision goals, personality characteristics and preexisting beliefs, their responses in an 

interview situation may be different (Bryan et al. 2009; Hansen et al. 2004; Scoville-Simonds 

2018).  Respondents might also be inclined to paint a negative picture of their situation in order 

to attract funding (De Longueville et al. 2020; Nielsen et al. 2012). 

Attention to the sociolinguistics can enrich data collection by highlighting cultural meanings 

and power differentials in public discourse. Obtaining interview data from local farmers in a 

language the researcher is not familiar with comes with the risk that nuances may get lost in 

translation (Roncoli 2006; Simelton et al. 2013). The way questions are posed while obtaining 

the data can alter the results as for example unprompted questions result in respondents 

sharing the information they find the most salient or relevant whereas specific questions can 

facilitate comparison with meteorological data (Dickinson et al. 2017). Since climate reference 

scales are not homogenous, attributes not captured in the dataset might shape perceptions. 

Climate is perceived as an interconnected system and perception of change in one indicator 

may be linked to those in others (Debela et al. 2015; Howe et al. 2014; Mainardi 2018). 

1.2.2  Meteorological trends and variability of rainfall in the Ethiopian highlands 

Rainfall in the highlands of Ethiopia has been studied intensively, however, when comparing 

the literature on the topic, the results seem conflicting. Differences in methodology and data 

lead to sometimes vastly different results. The studied timeframe, whether station- or satellite-

based data is used, whether data is missing, the exact study area and the temporal resolution 

of the data can influence whether changes in rainfall are determined or not. For example, in 

the 1980s, the region was affected by multiple severe droughts (Ayalew et al. 2012; Seleshi 

and Zanke 2004; Suryabhagavan 2017; Viste et al. 2013). In the 1990s however, the region 

received abundant rainfall in parts of the highlands, which means the choice of the timeframe 

can obscure trends (Bewket and Conway 2007).  

Seleshi and Demaree (1995) found a decline in mean monthly rainfall in the north central 

highlands between 1945 and 1984 mainly explained by reduced rainfall in July and August. 

Similarly, Mekonen and Berlie (2020) report a decline in annual and decadal rainfall since 1900 

with an abrupt decline since the 1970s. Decreasing annual rainfall was also found by Asfaw et 

al. (2018) and Addisu et al. (2015). Since rainfall in the highlands knows two rainy seasons, 
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the main rainy season (kiremt) in summer and the lighter spring rainy season (belg), rainfall is 

most often analyzed at the seasonal scale. For the amount of rain during kiremt, decreasing 

trends were found by Asfaw et al. (2018) in the 1901-2014 period. Others found increasing 

trends for kiremt in their respective study area, although these trends were not statistically 

significant everywhere (Alemayehu and Bewket 2017; Bewket and Conway 2007; Mekonen 

and Berlie 2020; Mohammed et al. 2018; Rosell 2011; Rosell and Holmer 2007; Seleshi and 

Zanke 2004). Trends in the amount of belg rainfall are mostly described as decreasing 

(Alemayehu and Bewket 2017; Asfaw et al. 2018; Mekonen and Berlie 2020; Rosell 2011; 

Rosell and Holmer 2007). No trends in rainfall amounts or non-significant changes were also 

found by a number of studies (Alemu and Bawoke 2019; Ayalew et al. 2012; Conway 2000; 

Gebrechorkos et al. 2019a, 2019b; Mengistu et al. 2014; Seleshi and Camberlin 2006; 

Suryabhagavan 2017; Viste et al. 2013; Weldegerima et al. 2018). 

Some studies looked beyond just rainfall amounts and analyzed changes in extreme events or 

dry spells. Asfaw et al. (2018) describe an increasing number of drought years. Gebrechorkos 

et al. (2019a) found decreasing intensity of extreme events while Bewket and Conway (2007) 

noted an increase in heavy rain in the city of Dessie and a decrease in other parts of Amhara. 

A decrease in length of the longest annual dry spell and an increase in the longest wet spell in 

parts of South Wollo was found by Mohammed et al. (2018) and Gebrechorkos et al. (2019a) 

noted a decrease in wet spell length. No trends for dry spells, rainfall intensity and the 

frequency of extreme events were found by Gebrechorkos et al. (2019a) and Seleshi and 

Camberlin (2006). Overall, no systematic patterns in trends and spatial variations of extreme 

rains were found in the north central highlands. Patterns were mixed with only few significant 

trends (Mohammed et al. 2018). The timing of the rainy seasons was the subject of only few 

studies. A later start of belg and an earlier start of kiremt was noted by Rosell (2011). Rosell 

and Holmer (2007) mention shorter rainy seasons and Ayalew et al. (2012) found an earlier 

cessation of kiremt rains to affect the growing season. A shift of the rainfall regime from 

monomodal to bimodal is noted by some authors (Mohammed et al. 2018; Rosell 2011). 

Temporal variability of rainfall was found to have increased in the study area by Rosell and 

Holmer (2007) while Abtew et al. (2009) describe the temporal variation in the study area as 

largely stable. In general, it is noted that rainfall in the highlands is highly variable, with the 

lighter belg rains showing greater variability than the rains during kiremt or annual rainfall 

(Alemu and Bawoke 2019; Mekonen and Berlie 2020; Mohammed et al. 2018; Rosell 2011; 

Weldegerima et al. 2018). Complex patterns of rainfall and high spatial variability at a 

subregional scale are consistently found (Abtew et al. 2009; Addisu et al. 2015; Alemu and 

Bawoke 2019; Bewket and Conway 2007; Mohammed et al. 2018). The literature on rainfall 

change and rainfall variability shows an overall inconclusive picture. The highly localized 
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patterns in the study area indicate the need for local rainfall analysis when comparing the 

meteorological data with small-scale farmers’ perceptions. 

1.3 Research objectives 

Due to the high spatial variability of rainfall in the Ethiopian highlands, a localized assessment 

of rainfall change is advisable. As mentioned, rainfall data from gauge stations is neither 

available locally in the villages where the interview data was collected, nor in a consistent 

timeseries over long periods. The Climate Hazards Group Precipitation with Stations (CHIRPS) 

dataset provides the opportunity to assess rainfall changes and rainfall variability locally at a 

high spatial (0.05°) and temporal resolution (daily) (Funk et al. 2015a). The first research 

objective is thus providing a detailed analysis of trends and variability in rainfall in South Wollo 

since 1981. Variability includes “variations in the mean state and other statistics (such as 

standard deviations, the occurrence of extremes, etc.) of the climate on all spatial and temporal 

scales beyond that of individual weather events” (IPCC 2015). 

Local perceptions of environmental change were assessed through qualitative semi-structured 

household interviews and focus group discussions. The literature mentions small-scale 

farmers perceiving changes in rainfall through the timing and duration of rain rather than 

aggregate amounts. The study aims to analyze how rainfall is perceived to be changing by 

small-scale farmers in South Wollo, which aspects of the rain are changing and how it impacts 

the farmers’ livelihoods. Asking unprompted questions about rainfall in semi-structured 

interviews can improve the understanding on the aspects of rainfall that are most relevant to 

local farmers. Considering the rainfall regime is bimodal, it will be assessed whether one rainy 

season is more affected than the other and how changes in the different seasons are 

perceived. 

Lastly, the study aims to contribute to the literature on perceptions of environmental change 

by focusing on aspects such as timing, duration and extreme events. CHIRPS offers the 

opportunity to better capture these particular aspects of rainfall through its high temporal and 

spatial resolution and the availability of a consistent timeseries than for example station data. 

No studies so far have used CHIRPS to assess rainfall changes and perceptions of local 

smallholders. 

2 Study area 

Ethiopia is a landlocked country in the Horn of Africa, bordered by Djibouti and Eritrea to the 

North, Somalia to the East, Kenya to the South and Sudan and South Sudan to the West. It is 

the second most populous country in Africa, characterized by rapid population growth with 

approximately 106.4 million inhabitants in 2017 compared to only 36 million in 1981 (World 

Bank 2020). The study was conducted in six kebeles, the smallest administrative unit in 
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Ethiopia, in the South Wollo Zone of the Amhara Regional State in the Northern Ethiopian 

highlands, located between about 10° 11’ and 11° 43’N and between 38° 24’ and 40° 01’E 

(figure 1). The largest city in the area is Dessie located about 400 km north of Ethiopia’s capital 

Addis Ababa. It is a mountainous area where altitude and terrain strongly influence rainfall 

patterns and cropping activities. This results in the presence of three agroecological zones in 

the study area: Kola (1200 -1600 masl), Weyna Dega (1600 - 2600 masl) and Dega (2600-

3600 masl) (Hurni 1998). In the high altitude parts of South Wollo, farmers refrain from cropping 

in the summer months and are fully dependent on the lighter spring rains due to low 

temperatures and intense rainfall, partly in the form of hail which can destroy crops (Groth et 

al. 2020; Hermans and Garbe 2019). 

South Wollo’s rainfall regime is characterized by three distinct seasons locally known as kiremt, 

the main rainy season from late June to September/October, belg, the small rainy season from 

February/March until May and the dry season, bega, during boreal winter (figure 3). Kiremt 

rains in Ethiopia are mainly caused by the northward migration of the intertropical convergence 

zone (ITCZ). Other influences include Arabian and Sudanese thermal lows developing along 

20°N, high-pressure systems evolving and persisting over the South Atlantic and South Indian 

Ocean, the tropical easterly jet and the development of the low-level Somali jet (Seleshi and 

Zanke 2004). Kiremt rains cover most of Ethiopia and are the most important rainy season for 

Figure 1 Maps of the location of South Wollo in Amhara Regional State in Ethiopia (right) and of the 
location of the study kebeles within South Wollo with elevation from Shuttle Radar Topography Mission 
(SRTM) at 250m resolution (Farr et al. 2007) (left). 
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agricultural activities, as 90-95% of the country’s cereal grains are grown in this period 

(Hermans-Neumann et al. 2017). Belg rains are mainly caused by the development of a 

thermal low (cyclone) over South Sudan and moist winds from highs in the Gulf of Aden and 

Indian Ocean being drawn into this center causing rains in parts of the Ethiopian highlands 

(Seleshi and Zanke 2004). Belg, in particular, is highly variable in the study area, both spatially 

due to the mountainous terrain and temporally (Alemu and Bawoke 2019). Bega is dominated 

by dry air masses originating from the Saharan anticyclone and/or high-pressure systems over 

central Asia extending into the Arabian Peninsula. Rainfall during bega is very rare, but is 

occasionally caused by low-pressure systems moving eastward from the Mediterranean and 

interacting with tropical systems (Seleshi and Zanke 2004). In figure 2, maps of the study area 

on an example day for each season show precipitation amounts and spatial distribution. 

The livelihoods of the local farmers are characterized by mixed subsistence, rainfed and low 

input agriculture. Employment opportunities outside of agriculture are rare. They keep 

livestock, e.g. cows, goats, sheep or chicken, and grow mainly barley, wheat, teff, maize, 

pulses and sorghum (Groth et al. 2020).  Livestock is an important asset for farmers in the 

study area and correlates with other indicators of welfare such as income, expenditures and 

food availability (Little et al. 2006). 

In 1975, land in Ethiopia was nationalized by the Derg military government. It was distributed 

to households mainly based on family size. Land redistributions in Amhara happen regularly, 

with major redistributions having taken place in 1997 (Holden and Yohannes 2002). Farmers 

can acquire land through inheritance or through these centrally organized redistributions which 

Figure 2 Map of the study area and CHIRPS precipitation estimates (Funk et al. 2015a) with example 
days for high precipitation during belg (left) and kiremt (right). 
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have led to increasingly fractionalized landholdings and, due to a growing population, tenure 

has become a contentious issue for families and local communities (Ege 2017; Hermans and 

Garbe 2019; Morrissey 2013). As a consequence of the land scarcity, fallow land essentially 

does not exist (Hermans and Garbe 2019). 

In addition to land being scarce, severe land degradation in the form of topsoil loss, gully 

erosion and declining soil fertility is a major risk to local farmers’ livelihoods (figure 4) (Groth 

et al. 2020; Nyssen et al. 2004). Changing land use and land cover, mainly caused by poverty 

and a lack of agricultural intensification are the most important contributors to land degradation 

in the Ethiopian highlands (Nyssen et al. 2004). The lack of land combined with the increasing 

degradation is interlinked with farmers using steeper slopes for agriculture and intense grazing 

pressure (Bewket and Conway 2007). Large areas have become unsuitable for agriculture and 

soil fertility is decreasing, even though much has been done in the highlands in terms of soil 

and water conservation practices (Adimassu et al. 2017; Mekuriaw et al. 2018; Meshesha et 

al. 2014).  

Although the literature on trends in droughts is not conclusive, it has been widely 

acknowledged that the effects of droughts have become increasingly severe given the variety 

of threats local farmers face (Little et al. 2006). Now, the Ethiopian highlands are regularly 

severely affected by famines, notoriously food insecure and have become heavily reliant on 

government and international aid, even in years with good rainfall (Groth et al. 2020; Little et 

al. 2006). People’s ability to make a living in the face of these risks is challenging, even in 

comparison to other low-income parts of rural Africa (Little et al. 2006). 

Figure 3 Rainfall regime in the study area. The graph shows the 10-day rolling mean of the mean daily 
precipitation in the six study kebeles between 1981 and 2017. Rainfall estimates are based on CHIRPS 
(Funk et al. 2015a). The small rainy season (belg) occurs between February and May and the main 
rainy season (kiremt) between June and October. 
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3 Data 

3.1 Research site selection 

The selection of research kebeles and the collection of the interview data took place in the 

context of Groth et al. (2020) with a focus on environment-related migration. Four districts 

(woreda) within South Wollo were selected with the aim of purposively selecting a 

heterogenous sample of potential kebeles for further study: Legambo, Dese Zuria, Kutaber 

and Kalu. During a preparatory visit in April and May of 2017, district officials in agricultural 

offices were interviewed in order to get an overview of the kebeles in the respective districts 

regarding issues concerning livelihoods, major risks, coping and adaptation strategies. 19 

kebeles were selected as potential research sites and visited to gather more detailed 

information on the situation in the kebeles. Village officials, mayors and/or religious leaders 

were asked in detail about their kebele compared to others in the area as well as differences 

within the kebele in terms of their key socioeconomic and environmental variables.  

Based on the information gathered during the preparatory visit, a sample of six kebeles was 

selected as study sites with the aim of drawing a broadly representative sample of South Wollo. 

Figure 4 Photograph of the landscape in South Wollo with gully erosion. 
Photo credit: Juliane Groth. 

Table 1 Details of the study kebeles as described by local officials (Groth et al. 2020). 
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The first variable included in the selection process is agroecological gradient (Kola (1200 -

1600 masl), Weyna Dega (1600 - 2600 masl), Dega (2600-3600 masl)), which is based on 

rainfall, cropping patterns and altitude (Hurni 1998). Second, land degradation (high and low 

severity) defined as a “reduced capacity of the soil and land to provide goods and services for 

human well-being mainly driven by soil erosion, i.e. gully erosion or the loss of topsoil and 

nutrients” (Groth et al. 2020). Third, two variables for remoteness were chosen: the presence 

of an asphalt road and/or a market within the kebele (Groth et al. 2020) (table 1). 

3.2 Qualitative Interviews 

In-depth fieldwork was conducted between November 2017 and February 2018 with eight to 

nine days spent in each kebele. The interviews were held in Amharic with the help of a local 

assistant who is from the region and familiar with fieldwork in local communities. During the 

first two days, three focus group discussions with five to seven participants were held in each 

kebele. The discussions lasted between three and four hours. The first group consisted of 

kebele officials (e.g. extension workers, religious leaders, head of administration). The second 

group was made up of heads of migrant households or their spouses and the third of heads of 

non-migrant households or their spouses. A migrant household was defined as a household 

where somebody had migrated outside of the kebele for at least one month within the last five 

years.  

Focus groups were important for obtaining an overview of the specifics of local livelihoods and 

to build trust among the communities. Methods included wealth ranking, daily activity 

calendars, livelihood risk assessments, strategy ranking and mobility maps. Local officials 

were asked to map the kebele with its sub-kebeles and describe them according to the criteria 

relevant for site selection (figure 5). This was done to ensure that the part of the kebele selected 

for household interviews matched the previous classification from the selection process. Local 

Figure 5 Photograph of the data collection showing a focus group discussion 
with village mapping. Photo credit: Juliane Groth. 
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officials also supported the identification of potential respondents for household interviews 

(Groth et al. 2020). 

In an attempt to achieve a heterogenous sample of households, three migrant and three non-

migrant households were selected, each with regards to their respective socioeconomic status 

(poor/medium/better-off). Since interviewees had to be able to recall the last decade, an age 

requirement of at least 30 years was adopted. In some cases, it became clear during the 

interview process, that a household had been mischaracterized and an additional household 

matching the characterization was sampled, leading to six to eight household interviews per 

kebele. The interviews followed a semi-structured approach with a list of guiding questions and 

consisted of three parts. First, the socioeconomic composition of the household was assessed, 

including main activities, land and crop management and personal characteristics of household 

members. Second, perceived changes in land degradation and rainfall were assessed, 

including how these changes affected the household’s daily lives and the strategies to address 

them. The timeframe for these questions was 20 years and farmers were given the change in 

government in 1991 as a reference point. Third, migration experiences such as time span, 

destination, reasons for leaving and returning, financial and/or material transfers were 

assessed. In total, 18 focus group discussions and 42 household interviews are part of the 

dataset. 

3.3 Rainfall estimates 

The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) is a quasi-global 

(50°S-50°N) dataset (Funk et al. 2015a). While CHIRPS data is available in a variety of 

temporal and spatial resolutions at the Climate Hazard Group’s file transfer protocol (FTP) 

server (ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/), only data with a daily 

temporal resolution and a spatial resolution of 0.05° x 0.05° was used. In South Wollo, at 

latitudes between 10°N and 12°N, the grid cells offer a spatial resolution of approximately 5km 

x 5km. Data is available from 1981 to near-present. In order to correspond with the timeframe 

of the interview data collection, 31st December 2017 was determined as the last day of CHIRPS 

data to be considered. 

CHIRPS was developed by the US Geological Survey (USGS) and the Climate Hazards Group 

at the University of California Santa Barbara. Three main data sources are used to calculate 

precipitation values: (1) the Climate Hazard group Precipitation Climatology (CHPclim), (2) 

satellite-based thermal infrared (TIR) precipitation estimates and (3) gauge observations 

(Dinku et al. 2018; Funk et al. 2015a). The CHIRPS calculation process is illustrated in figure 

6 and explained below. 

The first data source for CHIRPS, the CHPclim, is a monthly precipitation climatology based 

on precipitation normals from station data, monthly means of satellite surfaces calculated from 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/
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five satellite products and topographic and physiographic surfaces based on elevation, latitude 

and longitude (Funk et al. 2015b). The satellite products used in the CHPclim are (1) the 

Tropical Rainfall Measuring Mission (TRMM) 2B31 microwave precipitation estimates 

(Huffman et al. 2007), (2) the Climate Prediction Center morphing method (CMORPH) 

microwave-plus-infrared based precipitation estimates (Joyce et al. 2004), (3) monthly mean 

geostationary infrared brightness temperature derived from multiple geostationary weather 

satellites (Janowiak et al. 2001), (4) Land Surface Temperature (LST) estimates derived from 

multispectral observations from Moderate Resolution Imaging Spectrometers (MODIS) (Wan 

2008) and, after all these products were convolved into a common 0.05° grid, (5) the average 

of the CMORPH and TRMM precipitation fields was created as a fifth predictor (Funk et al. 

2015b).  

The second data source for CHIRPS, thermal infrared data, is retrieved from two global 

geosynchronous thermal infrared archives: the Globally Gridded Satellite (GriSat) and the 

NOAA Climate Prediction Center Dataset (CPC TIR). Pentad (five-day) rainfall estimates are 

calculated as the percentage of time during the pentad that the TIR observations show cold 

cloud tops (< 235°K). The cold cloud duration value is converted into millimeters of precipitation 

through previously determined local regression with Tropical Rainfall Measuring Mission Multi-

satellite Precipitation Analysis version 7 (TRMM 3B42 v7) precipitation pentads (Funk et al. 

2014). The pentadal precipitation estimate is then expressed as a fraction of normal by dividing 

each pixel’s value by its long-term mean. This fraction is multiplied with the respective CHPclim 

Figure 6 Overview of the CHIRPS calculation process. Modified from (Funk et al. 
2015b) 
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value to produce the CHIRP estimate. The cold cloud duration values are thus used to estimate 

variations around the CHPclim mean in order to reduce systemic bias. Daily CHIRP values are 

disaggregates of the pentads (Funk et al. 2015a). 

Finally, station data from more than 200 000 locations is blended with the CHIRP dataset to 

produce CHIRPS. The highest-quality station within a 5km radius is used as an anchor-station 

(N= 47 390) and missing values are filled with other sources within that distance. A modified 

inverse distance weighting method is applied to adjust CHIRP values with station data: for 

each grid cell in CHIRP, the five nearest stations are assigned a weight proportional to the 

square of their expected correlation. The closer a station, the higher the weight. The weights 

are scaled to sum 1 and used to blend the station data into a single ratio to adjust CHIRP 

estimates (Funk et al. 2014; Funk et al. 2015a). 

CHIRPS has been validated over East Africa (Dinku et al. 2018; Gebrechorkos et al. 2018) 

and Ethiopia specifically (Ayehu et al. 2018; Bayissa et al. 2017) through comparison with 

gauge data and its performance has been compared with a number of other satellite-based 

rainfall products. In East Africa, CHIRPS outperformed the African Rainfall Climatology version 

2 (ARC2) with higher skill and lower bias, the Tropical Applications of Meteorology using 

Satellite data (TAMSAT3), which performed better only at the daily timescale but contains 

considerable data gaps. CHIRPS was found to capture daily rainfall characteristics such as 

the number of wet days, duration of rainy seasons and total and daily rainfall well, although it 

was noted that correlation between station data and CHIRPS decreases with higher temporal 

resolution (Dinku et al. 2018; Gebrechorkos et al. 2018). 

In the Upper Blue Nile Basin, which covers large parts of Amhara, CHIRPS also outperformed 

ARC2 and TAMSAT3 (Ayehu et al. 2018) as well as Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural Networks (PERSIANN), African Rainfall Climatology 

and Time-series (TARCAT) version 2 and Tropical Rainfall Measuring Mission (TRMM) 

(Bayissa et al. 2017). CHIRPS was found to be in good agreement with ground observations 

and showed excellent scores in bias and mean error at different timescales (Bayissa et al. 

2017). Specifically in the Ethiopian highlands, CHIRPS showed reliable performance at 

different elevations during the wet seasons, even though satellite products tend to perform 

worse over mountainous terrain (Ayehu et al. 2018; Dinku et al. 2018). Since CHIRPS is 

available at a high spatial and temporal resolution including in countries where data is sparse 

or temporally incomplete such as Ethiopia, it is recommended for use in long-term climate 

studies and for drought monitoring (Bayissa et al. 2017; Gebrechorkos et al. 2018). 
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4 Methods 

4.1 Rainfall Analysis 

Based on a review of the literature and in correspondence with frequently mentioned rainfall-

related issues by interviewees, rainfall trends and rainfall variability were analyzed by means 

of the indices explained below. An overview of all indices analyzed can be found in table 2. 

Rainfall analysis was conducted separately for the respective cropping seasons used, only two 

indices were additionally calculated for annual data. As mentioned in chapter 1.2.1, farmers 

perceive changes in rainfall primarily in terms of their agricultural activities that are more 

influenced by the rainy seasons and their timing than aggregate annual rainfall (Cochrane et 

al. 2020; Slegers and Stroosnijder 2008). The analysis was performed in R (R Core Team 

2020).  

The rainfall indices are largely based on the recommended indices proposed by the Expert 

Team on Climate Change Detection and Indices (ETCCDI) which was established through a 

joint initiative by the Commission for Climatology (CCI) of the World Meteorological 

Table 2 Summary of the rainfall indices used in the analysis. 
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Organization (WMO), the World Climate Research Programme project for climate variability 

and predictability (CLIVAR) and the Global Climate Observing System (GCOS). The aim was 

to form a set of internationally agreed upon indices to improve and harmonize monitoring of 

temperature and rainfall (Frich et al. 2002; Karl et al. 1999; Zhang et al. 2011). A list including 

all ETCCDI indices can be found at http://etccdi.pacificclimate.org/list_27_indices.shtml (as of 

Nov 5, 2020). 

CHIRPS values were extracted for all six kebeles. The median value of all grid cells partially 

or fully within the official kebele boundaries was used as the precipitation estimate for the 

respective kebele on a given day, resulting in a time series of 13514 daily values over 37 years 

for each kebele. The indices were calculated for all kebeles based on these values and the 

mean value of the results was calculated for three groups of kebeles, differentiated by the 

cropping seasons farmers in these kebele used (belg only (BO), kiremt only (KO) or belg and 

kiremt (BK)). This distinction was necessary, since potential changes in rainfall can be very 

different for the rainy seasons, thus influencing cropping and perception of these changes in a 

very different way. Significant changing rainfall patterns for one season may be perceived as 

a very severe threat to their livelihood by respondents heavily relying on this season, whereas 

others may feel indifferent to these changes or not perceive them at all when their cropping 

activities are independent from said season. The three groups of kebeles are the one using 

only belg (Adej), those using both seasons (Teikake, Alansha) and those using only kiremt 

(Amba Gibi, Kundi, Tincha) (table 1). 

The results for all indices were grouped into four timesteps: 1981-1990, 1991-2000, 2001-2010 

and 2011-2017. The first three timesteps each span a decade while the last timestep consist 

of the remaining seven years. The last, shorter, period may lead to bias as there is less data 

incorporated into the calculations. For each timestep, the mean value, standard deviation and 

coefficient of variation (CV) were calculated to assess variability. CV is calculated as 

𝐶𝑉 =
𝜎

�̅�
 

where 𝜎 is the standard deviation and �̅� is the mean. 

4.1.1  Rainy Seasons 

The seasons were defined in two different ways: first, the rainy season was defined as the time 

between the calculated onset and the calculated offset of the rainy season (chapter 4.1.3). 

This definition was used for the indices related to timing (dur) and dry spells (cdd, totdsl, 

avgdsl), since a clearly defined onset and offset are particularly relevant to these indices. Dry 

spells can cause crop failure if they occur after rainy season onset: the seed dies due to a lack 

of precipitation early in the growing period or late in the season, i.e. the crops have not reached 

maturity when a dry spell ends the growing period (Rosell and Holmer 2007). 

http://etccdi.pacificclimate.org/list_27_indices.shtml
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The second definition uses monthly periods based on literature from the region (Legese et al. 

2018; Rosell 2011; Rosell and Holmer 2007). Belg is defined as the period from 1 February to 

31 May and kiremt is defined as the period from 1 June to 31 October. This broader definition 

was applied to avoid potential errors from false onset or offset calculations, as these proved to 

be very difficult in the analysis process. The second rainy season definition was applied to 

general indices (RR, rd) and indices concerning rainfall intensity and extreme events (SRA, 

Rx1day, R99p, R95p, SDII). These indices are hardly affected by the exact timing of the rains, 

e.g. the maximum 1-day precipitation (Rx1day) will almost certainly be during the actual rainy 

period. 

4.1.2  Total Rainfall and Rainy Days 

Total rainfall (RR) was calculated for annual and seasonal data. As mentioned above, the rainy 

season definition by month was used. Let 𝑅𝑅𝑖𝑗 be the daily precipitation amount for day 𝑖 of 

period 𝑗, then total rainfall amounts are calculated (Frich et al. 2002): 

𝑅𝑅𝑗 =∑𝑅𝑅𝑖𝑗

𝐼

𝑖−1

 

A rainy day is defined as any day with CHIRPS precipitation estimates above 1 mm. In the 

literature, rainy day thresholds vary depending on study area, research objectives and data 

availability. Studies with a stronger focus on climatology or hydrology often use a rainy day 

threshold of 0.1 mm, as it is the minimum measurable amount for station data while studies 

looking at agriculture or perception on the other hand often use a higher threshold as miniscule 

amounts of rainfall are (almost) irrelevant for agriculture and the perceptions of local 

communities (De Longueville et al. 2020; Segele and Lamb 2005). Also, since the daily rainfall 

represents an average of all CHIRPS grid cells fully or partially within the kebele, a smaller 

threshold may lead to the data being susceptible to outliers within CHIRPS grid cells. 

4.1.3  Timing of the Rainy Seasons 

The indices concerned with timing of the rainy seasons include the start of the season (onset), 

the cessation of the season (offset) and its duration (dur). The determination of rainy season 

onset in the literature can follow several different procedures, depending on the region and 

data availability. For example, for the determination of the onset of the West African Monsoon, 

at least 18 definitions were found (Fitzpatrick et al. 2015). 

Here, a threshold-based definition was used to determine rainy season onset, i.e. a specified 

amount of rainfall must occur over a specified time period. This is sometimes combined with 

an additional argument of an absence of dry spells in the following days. The onset definition 

as the first day of the year’s first wet-spell of three or more days with a total of 20 mm or more, 

provided there were no dry-spells of eight or more days in the subsequent 30 days, was 
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established for kiremt rains in Ethiopia. For regions such as South Wollo, where spring rains 

might give an early onset of kiremt, only dates within two months of the climatological onset 

date were considered (Segele and Lamb 2005). The defined threshold might seem arbitrary, 

however it serves as a proxy for soil moisture and is appropriate for local agronomic studies 

(Lala et al. 2020; MacLeod 2018). Considering this study is comparing farmers’ perceptions 

and rainfall data, it seems more appropriate to use a threshold-based definition, instead of, for 

example, definitions through rainfall anomalies, as farmers are unable to predict future 

developments of rainy seasons. It is also evident from the collected qualitative data that the 

agricultural decision-making process early in the season is largely based on soil moisture. 

Determining the exact thresholds is not universal and must be done locally, particularly in areas 

with high spatial variability such as South Wollo. Based on the definition used by Rosell (2011), 

which was determined specifically for this area of the Ethiopian highlands, the onset was 

defined as the first day of the first wet-spell of at least 15 mm rainfall over three consecutive 

days. An additional criterion for dry spells was not taken into consideration, as there was no 

onset date found for different dry-spell criteria used in the literature for many years and dry 

spells are assessed separately in this analysis. In order to avoid onset detection during singular 

rainfall events in the dry season, the onset date was searched only within the months when 

the respective rainfall occurs: for belg between February and May and for kiremt between June 

and October (Rosell 2011; Rosell and Holmer 2007). Also, farmers are unlikely to plant outside 

the time when the rainy seasons usually occur (Lala et al. 2020; MacLeod 2018). 

The determination of rainy season cessation proved extremely difficult in the analysis process. 

Segele and Lamb (2005) propose a threshold-based definition where the day before the first 

day of a dry-spell of at least 20 days is determined as the offset of the rainy season. This 

definition was developed for kiremt with the assumption that with the abrupt withdrawal of the 

ITCZ at the end of the rainy season, kiremt rains end and the determination of rainy season 

cessation is thus rather simple. Partially as a consequence of the CHIRPS interpolation 

process, but also due to the local characteristics of the rainfall in the study area, this definition 

proved insufficient for kiremt. For belg, a threshold-based cessation determination proved even 

less viable, as the temporal variability of belg is very high, the dry period between the rainy 

season varies and singular small rainfall events within this dry period are not uncommon. Thus, 

offset determination through rainfall anomalies, as first described for South America by 

Liebmann and Marengo (2001), rather than rainfall thresholds are chosen as the method for 

rainfall cessation determination. It has been successfully applied for onset and offset 

determination in Africa (Liebmann et al. 2012) and adapted for bimodal rainfall regimes 

(Dunning et al. 2016). The method is particularly appropriate to use locally and for gridded data 

such as CHIRPS and has proven robust across observational datasets (Dunning et al. 2016; 

MacLeod 2018). Since farmers are unlikely to plant outside the given window when the rainfall 
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usually occurs and since belg rains proved to be too weak to facilitate the application of the 

procedure proposed by Dunning et al. (2016) for bimodal rainfall regimes, the calculation was 

applied to a window centered on each season, February-May for belg and June-October for 

kiremt (Lala et al. 2020; MacLeod 2018).  

The underlying assumption of the method is, that precipitation during the rainy season exceeds 

its climatological annual average (Liebmann and Marengo 2001). First, the long-term mean 

rainfall �̅�𝑏𝑒𝑙𝑔 and �̅�𝑘𝑖𝑟𝑒𝑚𝑡 is calculated for the two seasons across all 37 observed years. Offset 

dates are then calculated for each individual year by computing the daily cumulative rainfall 

anomaly 𝐴(𝐷) on day 𝐷: 

𝐴(𝐷) = ∑ 𝑅𝑖 − �̅�

𝐷

𝑖=𝑜𝑛𝑠

 

where  𝑅𝑖 is the rainfall on day 𝑖, and 𝑖 ranges from the previously calculated onset date 𝑜𝑛𝑠 to 

the day 𝐷 (Dunning et al. 2016). The day of the year when the cumulative rainfall anomaly 

𝐴(𝐷) is at its absolute maximum is defined as the cessation day, as following that day relative 

accumulation is less than expected from climatology (Liebmann et al. 2012). Figure 7 from 

Lala et al. (2020) illustrates the onset and offset determination through the threshold method 

(for onset), the anomaly method with no window centered around the rainy season (yearly) 

and the anomaly method with the window around the rainy season for a unimodal rainfall 

regime in the Ethiopian highlands, i.e. kiremt rain only. 

Although the rainfall regime in figure 7 knows no belg rain, it shows on the one hand the offset 

date at the maximum cumulative anomaly (mid-October in figure 7) and its determination 

Figure 7 Daily Precipitation (left axis) and cumulative precipitation anomaly (right axis) for one year 
including long-term annual mean (green horizontal line), long-term window mean (red horizontal line) 
and respective cumulative anomalies. Onsets for threshold, yearly and window methods are shown as 
vertical lines (Lala et al. 2020). 



29 
 

before the last rainfall events of the year that are no longer part of the rainy season. This would 

make offset-determination through a threshold method as proposed by Segele and Lamb 

(2005) difficult. On the other hand, it also shows how determining the onset through the same 

method (window) compared to the threshold method (using the criteria by Segele and Lamb 

(2005) in figure 6) would move the determined onset date later into the season. This seems 

inappropriate in the context of this study, considering the amounts of rainfall between the onset 

date determined through the threshold and the date determined through the window method 

are quite substantial and would likely prompt agricultural activity by farmers (Lala et al. 2020).  

The duration of the rainy season 𝑖 in the year 𝑗 was calculated as  

𝑑𝑢𝑟𝑖𝑗 = 𝑜𝑓𝑓𝑠𝑒𝑡𝑖𝑗 − 𝑜𝑛𝑠𝑒𝑡𝑖𝑗 

which is simply the number of days between the determined onset and the determined offset 

date. 

4.1.4  Dry Spells 

Dry Spells can have devastating consequences for crops in the study area, especially early in 

the rainy season. For example, according to key informants in South Wollo, more than seven 

days in a row without rainfall after the onset of belg can completely destroy the growth of tef 

(Rosell and Holmer 2007). How devastating a dry spell is to crop growth and local farmers’ 

food security depends on the crop itself as well as the growth stage the crop is in. For example, 

grain crops are usually more sensitive to dry periods in the time of flowering and grain filling 

(Sivakumar 1992). 

The three dry spell indices are Consecutive Dry Days (CDD), total dry spell length (totdsl) and 

average dry spell length (avgdsl). A dry spell is defined as at least three contiguous dry days 

(RR < 1mm) between the previously calculated onset and cessation date (Segele and Lamb 

2005). CDD is part of the widely used ETCCDI indices and is calculated as the maximum 

number of consecutive days when precipitation is less than 1 mm (Zhang et al. 2011). It is 

widely applied in Ethiopia for dry spell monitoring (Gebrechorkos et al. 2019a; Mohammed et 

al. 2018; Seleshi and Camberlin 2006). The other dry spell indices follow Segele and Lamb 

(2005), with totdsl representing the count of all days defined as a dry spell day and avgdsl the 

mean length of the dry spells for each season. 

4.1.5  Intensity and Extreme Events 

The indices for extreme events and rainfall intensity include four ETCCDI indices developed 

for monitoring extreme events: Rx1day, R95p, R99p and SDII (Frich et al. 2002; Zhang et al. 

2011) as well as standardized rainfall anomaly (SRA). Extreme events such as heavy rainfall 

events and greater precipitation intensity are expected to increase in the process of global 

climate change, however different regional and local patterns, which require spatially adequate 
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analysis, exist (Tebaldi et al. 2006). Analyzing extreme events is particularly relevant in the 

context of this study since they have been found to shape perceptions significantly (Debela et 

al. 2015). 

Standardized rainfall anomaly (SRA) is used to determine wet and dry years in the record and 

allows for assessment of frequency and severity of droughts (Alemu and Bawoke 2019). SRA 

for the season 𝑖 in the year 𝑗 is calculated as 

𝑆𝑅𝐴𝑖𝑗 =
𝑃𝑖𝑗 − 𝑃𝑚𝑗

𝜎
 

where 𝑃𝑖𝑗 is the total precipitation in season 𝑖 in year 𝑗, 𝑃𝑚𝑗 is the mean precipitation in season 

𝑖 over the period of observation. 𝜎 is the standard deviation of precipitation over the period of 

observation (Agnew and Chappell 1999). Classification of SRA by McKee et al. (1993) can be 

found in table 3. Standardized rainfall anomalies are graphically represented in figure 9, which 

allows for evaluation of inter-annual fluctuations of rainfall in the study area over the 37 years 

observed (Ayalew et al. 2012). 

Rx1day describes the maximum 1-day precipitation event in each season and is calculated as 

𝑅𝑥1𝑑𝑎𝑦𝑗 = max (𝑅𝑅𝑖𝑗) 

where 𝑅𝑅𝑖𝑗 is the daily precipitation on day 𝑖 in period 𝑗 (Zhang et al. 2011). It is an absolute 

indicator for heavy rainfall events.  

R95p and R99p are very similar indices, looking at very wet and extremely wet days as a 

percentage of all rainy days during the respective rainy season. They are calculated as 

𝑅95𝑝𝑗 = ∑ 𝑅𝑅𝑤𝑗 𝑤ℎ𝑒𝑟𝑒 𝑅𝑅𝑤𝑗 > 𝑅𝑅𝑤𝑛95

𝑊

𝑤=1

 

and  

𝑅99𝑝𝑗 = ∑ 𝑅𝑅𝑤𝑗 𝑤ℎ𝑒𝑟𝑒 𝑅𝑅𝑤𝑗 > 𝑅𝑅𝑤𝑛99

𝑊

𝑤=1

 

Table 3 SRA classification (McKee et al. 1993; Alemu und 
Bawoke 2019) 



31 
 

where 𝑅𝑅𝑤𝑗 is the daily precipitation on a wet day 𝑤 (RR > 1mm) in period 𝑗, 𝑊 is the number 

of wet days in period 𝑗 and 𝑅𝑅𝑤𝑛95 and 𝑅𝑅𝑤𝑛99 are the 95th and 99th percentile of precipitation 

on wet days in the period of observation. The indices represent the amount of rainfall falling 

above the 95th and 99th percentile and include the most extreme precipitation events in the 

respective season (Alexander et al. 2006). 

The Simple Precipitation Intensity Index (SDII) measures the rainfall intensity, i.e. the amount 

of rainfall per rainy day and is calculated as 

𝑆𝐷𝐼𝐼𝑗 =
∑ 𝑅𝑅𝑤𝑗
𝑊
𝑤=1

𝑊
 

where 𝑅𝑅𝑤𝑗 is the precipitation on wet days 𝑤 (RR > 1mm) in period 𝑗 and 𝑊 is the number of 

wet days in 𝑗 (Frich et al. 2002; Zhang et al. 2011). 

4.1.6  Mann-Kendall Trend Test and Sen’s Slope Estimator 

The non-parametric Mann-Kendall (MK) trend test (Kendall 1975; Mann 1945) and Sen’s Slope 

estimator (Sen 1968) are widely used for climatological and hydrological time series data to 

detect trends and their magnitude. The MK test is particularly useful, as it uses only the relative 

magnitudes of the data instead of their measured values and the data need not conform to any 

particular distribution (Gilbert 1987). It is also considered robust against outliers (Mekonen and 

Berlie 2020). 

Before performing trend analysis, the data was inspected for possible autocorrelations through 

visual examination of the results of the autocorrelation (acf) and partial autocorrelation (pacf) 

function in R. No autocorrelations were found. The MK test is calculated by first listing the data 

over time: 𝑥1, 𝑥2, … , 𝑥𝑛 where 𝑥𝑖 is the datum at time 𝑖. The sign of all 𝑛(𝑛 − 1)/2 possible 

differences 𝑥𝑗 − 𝑥𝑘 is determined, where 𝑗 >  𝑘, resulting in the differences 𝑥2 − 𝑥1,  𝑥3 −

𝑥1, … , 𝑥𝑛 − 𝑥1, 𝑥3 − 𝑥2, 𝑥4 − 𝑥2, … , 𝑥𝑛 − 𝑥𝑛−2, 𝑥𝑛 − 𝑥𝑛−1. The function 𝑠𝑔𝑛(𝑥𝑗  − 𝑥𝑘) is an 

indicator function with the values 1, 0, or -1 according to the sign of 𝑥𝑗  −  𝑥𝑘: 

𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘) {

= 1 𝑖𝑓 𝑥𝑗 − 𝑥𝑘 > 0

= 0 𝑖𝑓 𝑥𝑗 − 𝑥𝑘 = 0

= −1 𝑖𝑓 𝑥𝑗 − 𝑥𝑘 < 0

 

The Mann-Kendall statistic, i.e. the number of positive differences minus the number of 

negative differences, is then computed: 

𝑆 =  ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘)

𝑛

𝑗=𝑘+1

𝑛−1

𝑘=1

 

A positive value of 𝑆 indicates a positive trend, i.e. measurements taken later in time tend to 

be larger, and a negative value of 𝑆 indicates a negative trend, i.e. measurements taken later 
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in time tend to be smaller (Gilbert 1987). Since 𝑆 is asymptomatically normally distributed, the 

mean and variance of 𝑆 are calculated to account for possible ties in 𝑥𝑗 − 𝑥𝑘 (Hipel and McLeod 

1994; Kendall 1975): 

𝐸[𝑆] = 0 

𝑉𝑎𝑟[𝑆] =  
𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑗(𝑡𝑗 − 1)(2𝑡𝑗 + 5)

𝑝
𝑗=1

18
 

where 𝑝 is the number of tied groups and 𝑡𝑗 is the number of data points in the 𝑗𝑡ℎ tied group. 

By calculating mean and variance of 𝑆, it is possible to check whether 𝑆 is significantly different 

from zero. The standard normal variate 𝑍 is consequently applied (Hipel and McLeod 1994): 

𝑍 =

{
 
 

 
 

𝑆 − 1

[𝑉𝑎𝑟(𝑆)]1/2
, 𝑖𝑓 𝑆 > 0

0, 𝑖𝑓 𝑆 = 0
𝑆 + 1

[𝑉𝑎𝑟(𝑆)]1/2
, 𝑖𝑓 𝑆 < 0

 

Kendall’s rank correlation coefficient (tau) is expressed as τ = S/D, where 𝐷 is defined as the 

maximum possible value of 𝑆, which occurs when 𝑥1  <  𝑥2  <  …  <  𝑥𝑛 (Hipel and McLeod 

1994; Kendall 1975) and is calculated as 

𝐷 = [
1

2
𝑛(𝑛 − 1) −

1

2
∑ 𝑡𝑗(𝑡𝑗 − 1)
𝑝
𝑗=1 ]1/2 [

1

2
𝑛(𝑛 − 1)]1/2. 

All calculations for the MK trend test were performed in R (R Core Team 2020) using the 

Kendall package (McLeod 2011). Besides Kendall’s tau, the package also computes 𝑆, 𝐷, 

𝑉𝑎𝑟[𝑆] and a two-sided p-value to test the null hypothesis H0 (no trend) against the alternative 

hypothesis H1 (upward or downward trend, depending on the sign of 𝑍). If the p-value is below 

the significance level of 𝛼 =  0.05, the alternative hypothesis is accepted. 

Since the MK test does not quantify the magnitude of the detected trends, Sen’s slope 

estimator is calculated additionally. It shows the change per unit time and is more robust 

against errors or outliers in the data than the slope in a linear regression model (Gilbert 1987). 

First, 𝑁’ slope estimates are calculated for each data pair: 

𝑄 =
𝑥𝑖′ − 𝑥𝑖
𝑖′ − 𝑖

 

where 𝑥𝑖′ and 𝑥𝑖 are the values at times 𝑖’ and 𝑖 where 𝑖’ >  𝑖 with 𝑁’ being the number of data 

pairs where 𝑖’ >  𝑖. The median of the 𝑁’ values of 𝑄 is Sen’s slope estimator (Gilbert 1987; 

Sen 1968). Sen’s slope estimator was calculated at the 95% confidence interval using the 

trend package in R (Pohlert 2020; R Core Team 2020). Trend analysis was performed for all 

indices and seasons except for Standardized Rainfall Anomaly (SRA) as the MK test cannot 

be performed for variables with both positive and negative values. 
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4.2 Interview Analysis 

The interview analysis was performed in MAXQDA. The 42 household interview and 18 focus 

group discussions were first grouped into the same kebele groups that were already used for 

rainfall analysis, i.e. belg only kebeles, kiremt only kebeles and kebeles using both cropping 

seasons. To ensure consistency and facilitate comparison between the perception data and 

the rainfall data, a framework similar to Simelton et al. (2013) was used to organize and 

contrast the data. The analysis process is illustrated in figure 8.  

The interview data was analyzed in a multi-step process. First, it was assessed whether 

respondents had perceived changes in rainfall or not. This was true for almost all cases. The 

responses were then categorized according to the rainy season they relate to. This was of 

course particularly relevant in the kebeles where both rainy seasons are used for cropping as 

respondents differentiated between changes in the respective seasons. In the next step, the 

data was categorized according to what had changed in the perceptions of the farmers. This 

included dry spells, extreme events such as heavy rainfall and answers relating to the timing 

of the rainy seasons. The categories were not exclusive as respondents did not always 

distinguish between different aspects, e.g. an earlier cessation of the rainy season was often 

equated with shorter durations. In the last step, it was assessed how the rainfall had changed 

Figure 8 Flow chart for organizing and categorizing perceptions of rainfall changes 
from interview data including example quotes. Modified from Simelton et al. (2013). 
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according to the respondents in terms of the amount of rain, its intensity, the frequency of 

changes occurring and whether the rain has become more or less variable (Simelton et al. 

2013). 

Additionally, the impacts of the perceived changes, e.g. declining yields, food insecurity or 

flooding were also assessed. Although only few respondents mentioned causes for the 

changes in rainfall, these were also coded. In order to improve contextualization of the data, 

other issues that were not directly related to rainfall changes such as land degradation, frost 

or weed infestation were also assessed. Farmers deployed various strategies to adapt to and 

cope with the threats to their livelihoods, including changing rainfall. These strategies were 

also coded and will be discussed, although in a limited manner as the data does not provide 

sufficient information on adaptation and coping strategies and it is not the central focus of this 

study.  

5 Results 

5.1 Rainfall Analysis 

Tables with results for mean, standard deviation and CV in four timesteps as well as tables 

with results from the Mann-Kendall trend test are featured occasionally in this section. For 

complete results for all indices, rainy seasons and kebele groups, please refer to annex A for 

mean and variability and to annex B for trend test. 

5.1.1  Annual Indices 

The two annual indices analyzed were total rainfall (RR) as well as the number of rainy days 

(rd). These indices give an overview of the situation but since cropping activities are dependent 

on seasonal rainfall, they do not allow for detailed analysis. Table 4 shows the mean values 

(x̅), standard deviations (σ) and coefficients of variation (CV) for annual total rainfall in four 

timesteps.  

The results for total annual rainfall (RR) when compared over the time periods show slightly 

higher variabilities in the 1980s and in the 2010s. These are also the decades when the most 

severe droughts occurred in the study area (the droughts occurred in 1984 and 2015, for more 

details in chapter 5.1.2). Comparing the results between Kebeles, the results show generally 

higher amounts of rainfall in the kebele using belg only compared to the other kebeles. Results 

of the Mann-Kendall trend analysis can be found in table 6. As the results in table 4 already 

suggest, there are no statistically significant trends in total annual rainfall in either type of  

kebele. 
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The number of rainy days is on average between 66 and 76 per year. In all kebeles, the 1980s 

were the most variable in terms of rainy days. In the 1990s and 2010s, all kebele groups show 

very similar numbers. In the kebeles using only belg for cropping, rainy days were more 

numerous in the 1980s and 2010s. Considering the 1980s were also the period with the lowest 

annual rainfall and the highest variability in both rainfall amount and the number of rainy days, 

the data suggest less intense and more variable rainfall in this period compared to the later 

decades. The kebeles using only kiremt had very similar numbers of rainy days throughout the 

period of observation, with a slight increase in the 2010s, which may be caused by the lower 

number of years incorporated into this data. The kebeles using both cropping seasons however 

have seen an increasing number of rainy days throughout the period of observation, with 

stagnating numbers in the 1990s and 2000s. In fact, this trend is also reflected in the Mann- 

Kendall test results where the number of rainy days for this kebele group shows a statistically 

Table 5 Mean percentage of total annual rainfall (1981-2017) each season 
receives per kebele group. 

Table 4 Results for indices calculated at the annual level including mean (�̅�), standard deviation (σ) and 

coefficient of variation (CV) for the three groups of kebeles: those using only belg for cropping (BO), 
those using both seasons (BK) and those using only kiremt (KO). 
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significant increasing trend at the annual level (table 6). Sen’s slope estimator suggests an 

average increase of ⅓ day per year.  

Other than the annual indices, seasonal indices will be explored only for the relevant kebele 

groups. In order to correspond better with the perception analysis, rainfall analysis for each 

season was only performed for kebeles where the respective season is used for cropping. This 

results in only two out of the three kebele groups shown per season. The seasons make up 

different proportions of the total annual rainfall as shown in table 5: belg contributes between 

21% and 26% to the total annual rainfall and kiremt contributes between 68% and 75%. 

5.1.2  Standardized Rainfall Anomaly (SRA) 

The results for Standardized Rainfall Anomaly (SRA) are interpreted according to the 

classification by McKee et al. (1993) (table 3) and were applied to Amhara by Alemu and 

Bawoke (2019). Results are visualized in figure 9. 

Between 25 and 28 of the 37 years analyzed are classified as near normal, depending on the 

kebele group. For belg, five years are classified as one of the three wetter categories by the 

SRA classification in table 3 (1983, 1987, 1993, 1995 and 1996). The high-altitude kebele 

using only belg for cropping received slightly wetter belg years than the kebeles using both 

seasons. The three drier classes however occur six times in the BO kebele and only four times 

in the kebeles using both seasons. The most severe droughts for belg are found in 1999 and 

2008. In the kebeles using both seasons for cropping, these years are classified as extremely 

dry, while being classified severely dry in the belg only kebele. This shows that in the kebeles 

using both seasons for cropping, extreme droughts were more severe, however the belg only 

kebele received more dry years overall. 

The SRA results for kiremt differ considerably from the belg results. In the kebeles using both 

seasons, six years were classified as wet: 1988, 1994, 1998, 1999, 2000, 2016. These same 

years fall into the wetter categories for the kebeles using kiremt only in addition to 2017. There 

is no overlap with the wetter belg years, in fact, the year 1999 is classified as wet during kiremt 

while being severely dry during belg. There are no differences in classification when it comes 

to dry years between the kebele groups. 1984 was extremely dry, 1987 and 2015 severely dry 

and 1982 and 1983 moderately dry, i.e. there were three consecutive dry years in the early 

Table 6 Results of the Mann-Kendall trend test (tau) and Sen’s slope estimator for the indices calculated 
at the annual level for the three groups of kebeles. Statistically significant trends at the 95% confidence 
interval (p < 0.05) are marked in bold font. 
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1980s. Again, it is notable that the years 1983 and 1987 are some of the wettest years during 

belg and some of the driest years during kiremt. 

These findings are consistent with literature correlating seasonal rainfall in the northern 

Ethiopian highlands with interactions between ocean and atmosphere in the Pacific Ocean 

known as the El Niño – Southern Oscillation (ENSO) phenomenon indicated by warm sea 

surface temperature anomalies in the tropical Pacific and the opposite event known as La Niña. 

Belg rains correlate positively with warm ENSO years and negatively with La Niña events, i.e. 

increased rainfall during ENSO and deficient rainfall during La Niña while kiremt rains show 

the opposite pattern (Fekadu 2015; Getahun and Shefine 2015; Seleshi and Demaree 1995). 

The results show this pattern in 1983, 1987 (ENSO) and 1999 (La Niña) for both seasons. The 

very wet 1998 kiremt season however is an outlier, as this was a strong ENSO year (Wolter 

and Timlin 2011). 

Figure 9 Seasonal results for standardized rainfall anomaly (SRA) for all kebele groups and rainy 
seasons. 
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5.1.3  Seasonal Total Rainfall and Rainy Days 

Belg 

The results for belg for both kebele groups in table 7 show similar tendencies, with BK kebeles 

receiving more rainfall than the one using only belg for cropping. Total rainfall amounts were 

higher in the 1980s and showed a decline in the following two decades and increasing amounts 

in the 2010s. The results show little variability in the 1980s, but highly variable rainfall (up to 

CV=0.39) in the following decade with a steady decline in CV since the 1990s. This 

development is more pronounced in the BK kebeles. These results are inconsistent with the 

findings from annual data, where variabilities in the 1980s and 2010s where the highest and 

total rainfall amounts, particularly in the 1980s, were lower. These findings confirm the results 

from the SRA and underline the conclusion, that the lower rainfall in the 1980s affected kiremt 

rains. 

The pattern of the development over time for total belg rainfall repeats itself in the rainy days 

index. In the BO kebele, most rainy days during belg are observed in the 1980s with 22.4 rainy 

days between February and May. These numbers declined in the 1990s and 2000s to a low of 

14.1 rainy days before increasing to 17.3 rainy days in the 2010s, thus not going back to 1980s 

levels. The kebeles using both seasons for cropping show a similar development. Other than 

the average number of rainy days, variabilities, however, have declined over the period of 

observation. The number of rainy days during belg has become less variable, a development 

that can also be observed for total belg rainfall apart from the 1980s. 

The results from the Mann-Kendall trend test in table 8 show a statistically significant negative 

trend for total belg rainfall in the kebele using belg only. While a similar trend also exists for 

kebeles using both seasons for cropping, it is not statistically significant at the 95% confidence 

Table 7 Results for total rainfall and rainy days during belg including mean (�̅�), standard deviation (σ) 

and coefficient of variation (CV) for the kebele groups using belg for cropping (BO and BK). 
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interval. The average annual decline in rainfall amounts during belg at around 2.7 mm must 

not be underestimated: farmers received on average more than 1% less rainfall every year 

over the 37 years observed. There are no statistically significant trends for the number of rainy 

days during belg. 

In sum, the total rainfall amounts during belg have declined over the period of observation with 

a significant decline in kebele where farmers use only belg for cropping. Total rainfall amounts 

during belg have been highly variable in the 1990s and 2000s. The number of rainy days during 

belg has not significantly changed, however it has become less variable since the 1980s. 

Kiremt 

Total rainfall during kiremt, between June and October, is unsurprisingly much stronger than 

during belg as shown in table 9. The two kebele groups show very similar results. Both received 

the least rain in the 1980s, the decade in which multiple severe droughts occurred during kiremt 

as shown in the SRA results, and the most rain in the 1990s. The fact that the lower rainfall 

amounts in the 1980s are mainly a result of failing kiremt rains in this period is again shown in 

the results. Kiremt total rainfall variability is moderately high in the 1980s and 2010s, but lower 

in the decades in between. However, the variability of total belg rainfall exceeds that of kiremt. 

The results of the Mann-Kendall trend test in table 10 show a statistically significant increasing 

Table 8 Results of the Mann-Kendall trend test (tau) and Sen’s slope estimator for total rainfall and rainy 
days during belg for the two kebele groups using belg for cropping. Statistically significant trends at the 
95% confidence interval (p < 0.05) are marked in bold font. 

Table 9 Results for total rainfall and rainy days during kiremt including mean (�̅�), standard deviation (σ) 
and coefficient of variation (CV) for the kebele groups using kiremt for cropping (KO and BK). 
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trend of total kiremt rainfall for kebeles using kiremt only. On average, these kebeles received 

over 6 mm more rain per year in the 37 years observed. This trend also exists in the kebeles 

using both seasons for cropping, however it is less pronounced and not statistically significant 

at the 95% confidence level. 

The number of rainy days during kiremt is between two and three times higher than during 

belg. The KO kebeles receive slightly more rainy days than the BK kebeles throughout all 

timesteps. The variability of the number of rainy days during kiremt does not differ much 

between the two kebele groups. While it has been moderately variable in the 1980s, CV has 

not exceeded 0.21 in the following decades. The Mann-Kendall trend test shows a statistically 

significant positive trend in the number of rainy days received by kebeles using both cropping 

seasons. This trend is far weaker and not statistically significant in the kebeles using only 

kiremt and mirrors the trend that was already detected in the annual number of rainy days. 

The amount of rainfall during kiremt has increased in parts of the study area while belg rainfall 

has decreased. In fact, the annual increase in kiremt rain was almost at the same magnitude 

as the decrease in belg rain. Kiremt was more variable in the 1980s and 2010s, the decades 

where SRA has shown the most severe droughts in the study area. While belg amounts have 

always been highly variable in the study area, there has been a decrease in belg variability. 

5.1.4  Timing 

Belg 

Results for the indices on the timing of belg can be found in table 11. The onset of belg in 

kebeles using both rainy seasons is slightly earlier than in the kebele using only belg. CV 

ranges between 0.18 and 0.35 which demonstrates high variability of belg onset, however, 

since the 1990s, the onset of belg has become less variable in both kebele groups. The 

development of belg onset over time shows a statistically significant positive trend (table 12), 

which means the day of the year when belg starts is increasingly late. In the 1980s, belg started 

on the 52nd and 50th day of the year in belg only and belg and kiremt kebeles, respectively, 

Table 10 Results of the Mann-Kendall trend test (tau) and Sen’s slope estimator for total rainfall and 
rainy days during kiremt for the two kebele groups using kiremt for cropping. Statistically significant 
trends at the 95% confidence interval (p < 0.05) are marked in bold font. 
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which is between 19 and 21 February in the Gregorian calendar. This date has moved forward 

at a rate of 0.69 and 0.55 days per year in the respective kebele group according to Sen’s 

slope estimator. By the 2010s, belg started at the 72nd and 76th day of the year, i.e. on 13 and 

17 March in a non-leap year. Even though it has become less variable, belg rains are starting 

almost one month later than they used to 30 years earlier. The onset and cessation of belg are 

illustrated in figure 10.  

The cessation of belg does not show any significant trends over time. In the kebele using only 

belg, it has been between the 112th and 116th day of the year, i.e. in late April, in three of the 

four timesteps observed, it was about 10 days earlier only in the 2000s. In the kebeles using 

both cropping seasons, the cessation of belg was later in the 1980s and 2010s (as late as the 

first week of May) than in the decades in between when belg ended around 16 April. The 

variability of the cessation of belg, although still quite high between CV=0.17 and CV=0.29, 

was not as high as the variability of the onset. In the kebeles using both cropping seasons, the 

end of belg rains has become less variable since the 1990s. 

With belg starting significantly later and ending at around the same time, one would expect the 

duration of belg to be declining. While this trend does exist at about the same magnitude in 

both kebele groups, it is not statistically significant at the 95% confidence interval. In the 1980s, 

Figure 10 Onset and cessation of belg with standard deviations in four timesteps for the kebeles where 
belg is used for cropping. 
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the duration of belg was the longest for both kebele groups, at 61 and 73 days respectively. 

While belg duration has been steadily declining in the kebele using only belg to around 41 days 

in the 2010s, it has been stagnating in the kebeles using both cropping seasons throughout 

the 1990s and 2000s before increasing again in the 2010s. 

What is most noticeable about the duration of belg, however, is its variability. CV values are 

extremely high, with the lowest values at 0.31 going up as high as 0.75. This is where the 

methodological issues with onset and offset determination are the most visible. When looking 

at the driest years for belg in the SRA results, the extreme drought in 1999 stands out as well 

as the fact that between 2007 and 2013, only one year was not classified as dry. Some of 

these extremely dry years such as 1999 essentially mean a complete failure of belg rains for 

cropping activities. When rain is that scarce, onset is possibly determined through a singular 

rainfall day within a very dry season. Since cumulative anomalies will not increase considerably 

Table 11 Results for the timing indices during belg including mean (�̅�), standard deviation (σ) and 

coefficient of variation (CV) for the kebele groups using belg for cropping (BO and BK). 

Table 12 Results of the Mann-Kendall trend test (tau) and Sen’s slope estimator for the timing indices 
during belg for the two kebele groups using belg for cropping. Statistically significant trends at the 95% 
confidence interval (p < 0.05) are marked in bold font. 
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after that event, as little to no rain is following it in the upcoming days, this singular rainfall 

event will be classified as the rainy season leading to durations of two or three days. In both 

kebele groups, there are only few years where this is the case. In the kebele using only belg, 

this concerns the years 1988, 1999, 2008 and 2013. In the kebeles using both cropping 

seasons, it is true in 1994, 1999 and 2008. The years appearing in both kebele groups, 1999 

and 2008, were in fact the driest years for belg throughout the period of observation and the 

remaining years were also drier than normal. When the number of rainfall events during an 

extremely dry year is so low, the determination of onset and offset through the methods used 

here should be interpreted very carefully. It is likely that for agricultural activities, belg rain in 

these years can be considered a complete failure. The already high variability of belg duration 

will be severely affected by these outliers and should be interpreted as such. 

The results for the timing of belg are similar for the kebele groups using this season for 

cropping. Belg rains start increasingly late, in the 2010s the onset was almost an entire month 

later than in the 1980s. The cessation date has not experienced a similar change over time. 

When interpreting indices for the timing of belg, methodological issues must be considered as 

very dry years can easily skew the results. Variability of belg timing is very high across all 

indices and has been declining since the 1990s for onset in both and cessation in one kebele 

group. 

Kiremt 

Compared to belg, the results for the timing of kiremt are very different. The onset of kiremt is 

almost identical in the two kebele groups using this cropping season throughout the period of 

observation. While kiremt rains started around the 187th day of the year in the 1980s and 2010s, 

i.e. 6 July in a non-leap year, it was about a week earlier in the decades in between. Variability 

of kiremt onset is very low and almost identical for all kebele groups and timesteps, around 

CV=0.06. Results for kiremt timing are illustrated in figure 11. 

Cessation of kiremt in both kebele groups has been earlier in the 1980s, when the rains ended 

on average in the last week of August. In the following decades, the cessation of kiremt is 

between the 248th and the 258th day of the year, i.e. between 5 and 15 September. In the 

1980s, variability of kiremt cessation was at about 0.1, while it showed very low variability in 

the following decades. The higher variability in the 1980s can be explained through an outlier 

in 1984, a year with extreme drought during kiremt, when kiremt cessation was determined in 

the week after the onset and some less pronounced outliers in the drought years of 1983 and 

1987. 

This pattern carries through to the duration index. Kiremt was around 20 days shorter and 

more than twice as variable in the 1980s than in the later decades, when the duration stagnated 

around 70 days and CV was between 0.12 and 0.2. As mentioned above, the reasons for this 
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are in part due to methodological issues as the offset and thus duration determination in the 

drought year 1984 produced similar outcomes as 1999 or 2008 during belg. In 1983 and 1987 

however, duration in BK and KO kebeles was between 37 and 42 and between 21 and 22 

days, respectively. In these years, the method was able to capture the rainy period quite well, 

as the results from the rainy days index are almost identical and this index assesses all rainy 

days between June and October. Kiremt rains in these years simply ended earlier and lasted 

much shorter than in the later decades. Together with the outlier in 1984, this explains the 

lower mean duration and higher variability in the 1980s. 

The timing of kiremt has hardly changed over the period of observation with the exception of 

the 1980s. The onset of kiremt occurs on average in the first week of July with standard 

deviations between one and two weeks. Since the 1990s, the cessation of kiremt is on average 

in the second week of September with standard deviations between four and 13 days. In the 

1980s, kiremt ended considerably earlier, in mid-August, and the timing showed much higher 

variability than in the following decades. 

Figure 11 Onset and cessation of kiremt with standard deviations in four timesteps for the kebeles where 
kiremt is used for cropping. 
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5.1.5  Dry Spells 

Belg 

The dry spell indices capture the length of the longest dry spell (CDD), the average length of 

dry spells (avgdsl) and the number of all dry spell days (totdsl) during each season. Since the 

dry spell indices were calculated within the rainy seasons that were determined in the timing 

indices, the previously mentioned methodological problems will carry through into these 

indices, influencing results and especially CV.  

The longest dry spell (CDD) during belg lasted on average between 14 and 17 days in the 

kebele using only belg and between 13 and 19 days in the kebeles using both rainy seasons 

for cropping. Variability of CDD was very high between CV=0.41 and CV=0.57. On average, 

the dry spells span between eight and eleven days (avgdsl) with very similar results for both 

kebele groups. Again, variability of average dry spell length is very high with CV between 0.27 

and 0.58. CDD and avgdsl show similar developments. Logically, the longest dry spell tends 

to be longer than the average dry spell length. Considering that a dry spell in the beginning of 

belg of more than seven days can potentially destroy an entire harvest (Rosell and Holmer 

2007), an average length between eight and eleven days already indicates potentially 

devastating outcomes. Of course, this is dependent on crop type and variety as well as the 

timing of the dry spells. 

The total count of dry spell days during belg, i.e. all days within a dry period of three or more 

days, is between 36 and 51 days, which is very high considering there are only 120 days 

between February and May and the duration of belg ranged between 41 and 73 days on 

average. This is emblematic of the issues with onset and cessation determination and suggests 

a very high variability of belg rains in terms of timing and distribution. Variability of the total dry 

spell length is also high with CV between 0.39 and 0.82. In the kebele using only belg for 

cropping, this variability has increased consistently since the 1990s from CV=0.59 to CV=0.82. 

There are no statistically significant trends over time in any of the three dry spell indices for 

belg rains. 

Kiremt 

Contrary to the results for belg, dry spells during kiremt were much shorter. The longest dry 

spell (CDD) lasted on average between seven and ten days. In the kebeles using both cropping 

seasons, the CDD in the 1980s and 1990s was one to two days longer than in the kebeles 

using only kiremt. While the two kebele groups experienced almost identical CDD in the 2000s, 

the kebeles using both seasons experienced, again, slightly longer CDD in the 2010s with 

about a 0.5-day difference. Variability for CDD is high throughout all timesteps and kebele 
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groups, between CV=0.3 and CV=0.88. The highest variability was observed in the 2010s in 

both kebele groups. 

The average dry spell length is not only almost identical for both kebele groups, but also almost 

identical throughout all timesteps, ranging from 5.4 to 6.5 days. Variability ranges between 

CV=0.27 to CV=0.37 in the first three timesteps. In the kebeles using belg and kiremt for 

cropping, variability of average dry spell length has consistently increased since the 1990s. In 

the 2010s, however, variability is at CV=0.64 in kebeles using only kiremt for cropping and at 

CV=0.43 in kebeles using both cropping seasons. This peak in the last timestep may be caused 

by the lower amount of datapoints, as this step is only seven years compared to the ten years 

in the other timesteps. 

Total dry spell length ranges from 13.7 to 23.8 days in the kebeles using only kiremt and 

between 19.1 and 25.7 in the other kebele group. The higher total dry spell length in the 

kebeles using both cropping seasons is consistent with the higher CDD in this kebele group. 

This indicates, that these kebeles may be more affected by dry spells during kiremt. Variability 

of total dry spell length is the highest of all dry spell indices, ranging from CV=0.33 to CV=0.7. 

In both kebele groups, variability of total dry spell length has decreased over time. There are 

no statistically significant trends for either dry spell index during kiremt. 

Compared to the dry spell indices for belg, kiremt is less affected by dry spells. Kiremt rain is 

more contiguous, which is evident when the dry spell indices are compared. Additionally, 

methodological issues come into play when rain is weaker overall, especially in drought years. 

No statistically significant trends over time were found for any dry spell index. All dry spell 

indices across all rainy seasons, kebele groups and timesteps showed very high variability. 

Increasing variability since the 1990s could only be observed in total dry spell length during 

belg in kebeles using only belg and in average dry spell length during kiremt in kebeles using 

both cropping seasons. 

5.1.6  Extreme Events and Intensity 

Belg 

Extreme events and intensity indices include the maximum 1-day precipitation (Rx1day), 

extremely wet days (R99p), very wet days (R95p) and Simple Daily Intensity Index (SDII). 

During belg, Rx1day is similar for both kebele groups that use this season for cropping, ranging 

between 40.6 mm and 51 mm. CV of Rx1day in the BK kebeles is between 0.16 and 0.29, 

while the BO kebele shows far greater variability between 0.25 and 0.48. This means, while 

the heaviest rainfall events of the season are similarly intense in the two kebele groups, their 

intensity is far more variable in the kebele using only belg. 
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R99p shows the percentage of extremely wet days, i.e. the 1% wettest days during the entire 

period of observation, that occurred seasonally in the respective time step. It is an indicator for 

the frequency of heavy rainfall events. In both kebele groups using belg, one timestep showed 

none of these extremely wet days: the 2000s for BK kebeles and the 2010s for the BO kebele. 

CV could thus not be calculated for these timesteps. In the BO kebele, the percentage in the 

remaining timesteps was on average between 1.15% and 2.04%. In the BK kebeles, it ranged 

from 0.73% to 4.28%. A closer look into the data reveals, that the R99p index identified 

extremely wet days only in a handful of years, six years in the BO kebele and ten years in the 

BK kebeles. Since the mean, which is calculated here over ten (resp. seven) years, is not very 

robust against outliers, this can skew the data. It also explains extremely high CV values, up 

to 2.43. Such high variabilities should be interpreted extremely carefully. The most extreme 

rainfall events occur infrequently and there is no statistically significant trend over the period 

of observation. 

R95p, the indicator for very wet days, captures the frequency of heavy rainfall events in a year. 

Other than R99p, it analyzes the 5% wettest days, which means more rainfall events are 

incorporated into the index overall. In the BO kebele, the frequency of very wet days was higher 

in the 1980s and 1990s at around 7.1%. In the later decades, it declined to around 4.7%. While 

the BK kebeles have also peaked in the 1990s at 8.4%, the frequency of very wet days was 

lower in the 1980s and has steadily declined since the 2000s to 4.8%. Variability of very wet 

days is very high, although not as high as variability of extremely wet days. CV ranges between 

0.52 and 1.23. In the BO kebele, the frequency of very wet days has become more variable 

since the 1990s, although it was at its highest in the 1980s. Interestingly, the BK kebeles show 

the opposite development: CV has declined over the entire period of observation. This means, 

the frequency of very wet days during belg has declined in all kebele groups but in the BO 

kebele it has become more variable since the 1990s while it is less variable in the BK kebeles. 

There are no statistically significant trends in either extreme events index during belg. 

Simple daily intensity index (SDII) measures the intensity of the rainfall. During belg, SDII is 

between 0.8 and 3.3 mm/day higher across all timesteps in the BK kebeles than in the BO 

kebele. Both groups experienced the most intense rainfall in the 1990s and a decline in SDII 

since. However, there are no statistically significant trends for SDII in either kebele group. 

Variability of SDII in the BO kebele has been the highest in the 1980s at CV=0.46 and has 

ranged between CV=0.2 and CV=0.25 in the following decades. In the BK kebeles, variability 

of SDII has peaked in the 1990s at CV=0.42 and also declined to around CV=0.22 since then. 

This means, the intensity of rainfall during belg used to be more variable than it is today. 
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Kiremt 

Results for the extreme events and intensity indices during kiremt can be found in table 13. 

The heaviest rainfall events of each year’s kiremt season are on average not much more 

intense than during belg. Rx1day for kiremt ranges between 45.3 mm and 57 mm. In the KO 

kebeles, it was highest in the 1990s and 2000s. In the BK kebeles on the other hand, it has 

been declining since the 1980s. Although the Mann-Kendall test shows a declining trend for 

Rx1day in this kebele group, it is not statistically significant at the 95% confidence interval with 

a p-value of only 0.055 (table 14). Overall, the heaviest rainfall events during kiremt are more 

intense in the BK kebeles than in the KO kebeles. Both kebele groups show moderate CV of 

around 0.2 in the 1980s. After a decline in variability in the 1990s, it has been increasing since 

to as high as CV=0.32. Since the 1990s, Rx1day is more variable in the BK kebeles than in 

the KO kebeles. This means, the BK kebeles tend to receive more intense heavy rains at a 

higher variability during kiremt. 

The most extreme rainfall events (R99p) during kiremt occur at a frequency between 0.61% 

and 1.83%. No statistically significant trends were observed over time. In the KO kebeles, CV 

Table 13 Results for the extreme events and intensity indices during kiremt including mean (�̅�), standard 

deviation (σ) and coefficient of variation (CV) for the kebele groups using kiremt for cropping (KO and 
BK). 
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of R99p was, like Rx1day, the highest in the 1980s at 1.96, has decreased in the 1990s and 

has been increasing again since then back to a very high variability of CV=1.94. In the BK 

kebeles, variability has been steadily increasing since the 1980s from CV=0.91 to CV=1.71 in 

the 2010s. Although the variability of R99p during kiremt is not quite as high as during belg, 

they should still be interpreted carefully. 

The frequency of very wet days (R95p) during kiremt ranges from 3.56 to 8.44%. In the KO 

kebeles, it has been the highest in the 1990s and has decreased ever since. In the BK kebeles, 

R95p has been decreasing since the 1980s. This negative trend in the BK kebeles is 

statistically significant at the 95% confidence interval (table 14). Variability of very wet days in 

the KO kebeles has steadily increased since the 1990s from CV=0.43 to CV=1.24 in a similar 

manner as the previously discussed extreme events indices have. Although this development 

is similar in the BK kebeles, variability of R95p has been stagnating in the 1990s and 2000s. 

Overall, the frequency of very wet days has declined over the period of observation with a 

significant decline in the BK kebeles. Variability however has increased since the 1990s, with 

a consistent increase in the KO kebeles.  

SDII has been stagnating in the KO kebeles between 16.07 and 17.75 mm/day throughout the 

period of observation. In the BK kebeles, rainfall intensity has decreased since the 1990s from 

18.72 to 16.27 mm/day. The decrease is, however, not statistically significant at the 95% 

confidence interval. The BK kebeles used to receive more intense rainfall in the 1980s and 

1990s than the KO kebeles, but this is no longer the case in the more recent time periods. 

Variability has, as was the case with most other extreme events indices for kiremt, been high 

in the 1980s, low in the 1990s and increasing since.  

Throughout all but one (R95p in the BK kebeles) extreme events and intensity indices, 

variability during kiremt has increased consistently since the 1990s. In the 1980s, they all show 

high variability. This pattern of the 1980s kiremt seasons differing from the following decades 

has been consistent throughout this rainfall analysis. The 1980s were very unusual in terms of 

rainfall, with multiple severe droughts and highly variable kiremt rains.  

Table 14 Results of the Mann-Kendall trend test (tau) and Sen’s slope estimator for the extreme events 
and intensity indices during kiremt for the two kebele groups using kiremt for cropping. Statistically 
significant trends at the 95% confidence interval (p < 0.05) are marked in bold font. 
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5.2 Interview Analysis 

5.2.1  Belg Only Kebele 

In the kebele using only belg for cropping, problematic changes in rainfall are perceived by all 

respondents. The changes concern mainly the timing of the rain, in particular its onset: it is 

perceived as coming later and being increasingly unpredictable. Respondents view this as the 

biggest risk to their livelihood and are extremely concerned about the uncertainty of belg. 

Heavy rainfall is not a major issue in this kebele, mainly because the heavy rainfall events 

occur primarily during kiremt. As slopes are very steep in this kebele and due to unsuitable soil 

conditions, farmers do not use kiremt for cropping. 

Most respondents view changes in yield as a direct result of changes in rainfall, i.e. good 

rainfall means high yields and poor rainfall means low yields. The respondents see the decline 

and the unpredictability of rainfall as the principal cause for decreasing yields. Livestock is an 

important, for some households even the only asset and respondents perceive a decline in 

livestock numbers partially as a result of changing rainfall. In a year with sufficient rainfall, there 

is enough fodder to feed existing livestock and potentially enough income from crop sale to 

increase herd sizes. In years with unfavorable rainfall conditions, it is possible to lose livestock 

to starvation due to fodder shortages, but most importantly, livestock is seen as an asset to 

generate income to compensate for low yields. 

Livestock sale if often mentioned as the most important strategy to overcome food shortages: 

Farmers first sell offspring, particularly of goats and sheep, and will in case of severe shortages 

sell other livestock such as cows or ox. An ox is vital for the household’s agricultural activities 

and its loss can have catastrophic consequences, as it can prevent the household from 

achieving previously generated yields in the following cropping seasons. Another often 

mentioned strategy to overcome shortages is receiving support from the government or friends 

and relatives. 

Respondents also mention a number of changes in agricultural practices due to the changing 

rainfall. Farmers mention that their ploughing frequency has increased to improve water 

percolation. Some respondents also mention a change from black to white barley as it is better 

in taste and better suited for drier conditions. Wealthier respondents use improved livestock 

breeds and eucalyptus is grown for building material, firewood and sometimes for sale. In case 

of insufficient rainfall, some households rely heavier on home gardens with irrigation. A number 

of other changes in agricultural practices are not exclusively seen as a reaction to changing 

rainfall, but rather to soil erosion and decreasing soil fertility. Strategies include terracing, check 

dams to prevent gullies, the use of fertilizer or compost. 
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5.2.2  Belg and Kiremt Kebeles 

In the kebeles using both seasons for cropping, some farmers have access to irrigation 

systems, which greatly influences their water availability. They are concerned about the onset 

of belg and its increasing uncertainty. The onset has moved later in the year and it is 

increasingly difficult to know when the rain starts. Belg amounts are also perceived to have 

declined. Respondents perceive less rainfall overall, less intense rainfall and higher variability 

during belg. Belg scarcity is seen as one of the biggest threats to their livelihoods by farmers 

without access to irrigation. Farmers with access to irrigation, especially from the lowest-

altitude kebele of Teikake, mention that using belg would not be possible without this access. 

In case of insufficient rainfall, the irrigation water or the second rainy season are used for 

compensation. Some respondents harvest twice a year, after each rainy season, while others 

harvest only once per year, i.e. sowing in belg and harvesting after kiremt. This is also 

dependent on the crops they grow. 

Perceptions of changes in kiremt are much more heterogenous in these kebeles: not all 

interviewees perceive changes in kiremt rains. Those who do are especially concerned with 

the timing of the rain and mention later onset and earlier cessation of the rain. Decreasing 

amounts of kiremt rain is only mentioned by few respondents, while others negate decreasing 

amounts. Heavy rainfall events during kiremt are not seen as a major problem, although some 

mention it to be increasing. According to those farmers, it produces gullies, destroys terraces 

and leads to water logging and flooded fields. This is particularly mentioned by farmers in 

Teikake, where the recent construction of a railway prevents the water from draining off.  

Lower yields and increasing food insecurity or the need to purchase food crops they used to 

be able to grow, are mentioned frequently by interviewees as the impacts they experience from 

changing rainfall. The main reason for this development is considered belg scarcity. Only few 

respondents mention other reasons such as soil erosion as the cause of declining yields. The 

respondents who are concerned with the timing of the rain mention it impacting the growing 

period: when belg is late, they sow later and crops are not fully mature to harvest before the 

heavier kiremt rains start, which potentially destroy the crops. When kiremt rain starts late, the 

crop is not fully matured by the time frost starts in October or November. This results in yields 

being lower than expected or the use of immature crops for fodder, meaning food crops need 

to be purchased. Overall, the access to irrigation is extremely important to these kebeles as 

the impacts of changing rainfall are primarily felt by farmers without this access. 

As explained before, livestock sale is a frequent strategy used to overcome food shortages, as 

well as loans and support from the government or friends and relatives. Other than in the 

kebele groups using only one rainy season for cropping, farmers in these kebeles are able to 

compensate potential losses with the harvest from the other cropping season. Depending on 
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the onset of the rain, farmers decide on the crops they grow and whether they compensate a 

potentially lost belg harvest with the kiremt harvest or vice versa. As in the kebele using only 

belg, eucalyptus trees are used as an important strategy to overcome food shortages. Other 

than in the previous kebele group, this is not limited to the sale of the trees, but also through 

providing labor by cutting and transporting them. Also, changes in crop types and varieties 

such as the use of more drought resistant or faster growing crops as well as frequent ploughing 

are mentioned strategies. The need for new crop varieties is mentioned as a direct 

consequence of decreasing rainfall amounts and changed timing. 

5.2.3  Kiremt Only Kebeles 

The most frequently mentioned problems regarding rainfall in the KO kebeles concern timing, 

i.e. duration, onset and offset of kiremt. Many respondents mention later onsets, increasing 

unpredictability and especially earlier cessation of the rain as a major problem. Often, 

respondents did not distinguish between changes in timing and changes in amounts of rain, 

i.e. shorter rainy periods also mean less rain overall. When asked about heavy rainfall, the 

answers are very heterogenous. Some mention increasing and others decreasing heavy rain 

events, however when it comes to impacts (e.g. top soil erosion, debris flow, gullies), 

respondents report an increase. 

The perceived shorter rainy seasons, in particular the earlier cessation, lead to shorter growing 

periods, i.e. immaturity of the crops at the end of the season and a decline in yields. 

Respondents mention increasing food insecurity as a consequence, often the immature crops 

are used as fodder and food crops need to be purchased. Since a later onset of the rain means 

later sowing, many respondents have problems with their immature crops being affected by 

frost in October/November. Early cessation of the rain is often mentioned as a problem in 

combination with fertilizer usage, as the fertilizer leads to crop burn in case of a lack of rainfall. 

The impacts of heavy rainfall events are mentioned frequently, top soil and gully erosion as 

well as seeds being washed away by heavy rainfall leading to a decline in or even a complete 

loss of yields. As mentioned above, this was not always seen as a result of changing rainfall, 

but of changing conditions on the ground such as a decline in vegetation cover on hillsides 

used for grazing. Farmers also report that they stopped fallowing their fields, for example after 

a drought or after land redistribution and took up ploughing activities instead. Heavy rainfall is 

considered a more severe problem as the frequently ploughed soil is more likely to be washed 

away. 

5.2.4  Beyond Rainfall 

Although changing rainfall is considered to be the primary driver of a decline in their quality of 

life by many respondents, other hardships are mentioned frequently. Problems surrounding 

hubertus
Hervorheben

hubertus
Hervorheben



53 
 

soil such as soil erosion, formation of gullies, a decline in soil fertility and soil salinization are 

not always seen as results of changing rainfall by interviewees. Frost, weeds, pests and 

diseases to livestock and crops are putting further pressure on farmers’ agricultural livelihoods. 

Weed infestation often led farmers to change crops. The most affected crop by the weeds is 

bean, which was often replaced by wheat or teff. 

Land degradation and land scarcity are mentioned frequently, often in combination with 

declining livestock numbers due to a lack of grazing land. Farmers mention insecure tenure 

and a lack of land as the reasons why they stopped fallowing and intensified their agriculture 

through more frequent ploughing or fertilizer use. This led to a decline in soil fertility and lower 

yields. A range of agricultural strategies are applied to mitigate the effects of land degradation, 

for example terracing or fertilizer usage. The most frequently mentioned strategies to 

overcome food shortages, rainfall induced or otherwise, are livestock sale and government 

support. Additionally, it has become increasingly popular to sell local beer or liquor. Many 

respondents have begun diversifying their livelihoods in this way and others are considering it. 

5.2.5  Causes 

Only very few respondents commented on what they thought was causing the changing rainfall 

they perceived. Those who did talk about the causes of the rainfall changes referred to god 

and few respondents mentioned climate change as the cause. Most interviewees, however, 

said they did not know what caused the changes in rainfall. The respondents conveyed a 

feeling of helplessness in tackling the problem since the causes are either unknown to them 

or beyond their powers. 

6 Discussion 

Analyzing rainfall in a study area with high spatial variability was possible at the local level 

through CHIRPS. Issues such as missing or erroneous data, as is common with gauge data, 

proved challenging for comparison between observed and perceived environmental change in 

the past (De Longueville et al. 2020; Dickinson et al. 2017), did not arise. Even though satellite 

products tend to perform poorly over mountainous terrain, CHIRPS has been found to do well 

in the Ethiopian highlands (Ayehu et al. 2018; Dinku et al. 2018). However, as Gebrechorkos 

et al. (2018) pointed out, CHIRPS tends to perform better at lower temporal resolutions and 

this study cannot account for potential errors in the CHIRPS data. Concordance between 

CHIRPS and station data was improved through area averages (Gebrechorkos et al. 2018), 

thus using the median of several grid cell values per kebele should have improved the quality 

of the estimates. 

The methods that were used in the rainfall analysis made a very comprehensive overview of 

rainfall in South Wollo possible, although a few adjustments had to be made in the analysis 
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process. The contiguous time series data facilitated the determination of central concepts in 

farmers’ perceptions such as the timing of the rainy seasons. However, it was necessary to 

work with two different definitions of the rainy seasons, one based on the determined onset 

and cessation of the season and one based on the months when these seasons generally 

occur. The reason for the application of the second definition were difficulties in determining 

the cessation of the rainy seasons, in particular in very dry years and for the lighter belg rains.  

The high variability of belg rain compared to kiremt and annual rainfall (Alemu and Bawoke 

2019; Mekonen and Berlie 2020; Rosell 2011) has been confirmed through the rainfall analysis 

(figure 12). While belg shows CV values between 0.26 and 0.33, CV for kiremt ranges mostly 

between 0.22 and 0.25. Annual rainfall shows the lowest variability at less than CV=0.18. The 

SRA evaluation has shown, that belg and kiremt behave differently. The geophysical 

processes influencing the rains, for example ENSO, can cause opposite developments in the 

rainy seasons (Fekadu 2015; Seleshi and Demaree 1995). The interview analysis has also 

shown that not all farmers are equally affected by rainfall changes in one of the two seasons. 

Changes at the annual level have little explanatory value and the need for seasonal rainfall 

evaluation in the Ethiopian highlands, especially when perceived changes are also assessed, 

is confirmed (Cochrane et al. 2020). The farmers in South Wollo perceive rainfall primarily in 

the way it affects their cropping activities and crop failure is the most prominently mentioned 

impact of deteriorating rainfall conditions. Also, temperatures were reported to have increased 

Figure 12 Mean seasonal and annual rainfall and its coefficient of variation (CV) 
in the study area between 1981 and 2017. Each dot represents one CHIRPS 
grid cell fully or partially within one of the study kebeles. 
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in the study area (Asfaw et al. 2018; Mekonnen et al. 2018) which may have caused higher 

evapotranspiration and thus lower water availability (Osbahr et al. 2011). Rainfall changes 

were the most frequently mentioned threat to the farmers livelihoods, especially with regard to 

onset, duration and cessation of the rain. This is mentioned frequently in the literature and 

emphasizes the importance of assessing timing and distribution of rainfall instead of aggregate 

amounts in drought monitoring (Below et al. 2015; Cochrane et al. 2020; Simelton et al. 2013). 

Future studies can consider emphasizing staple crops, their growing period and water needs 

when comparing meteorological observations and perceived rainfall change (Rosell and 

Holmer 2007).  

Determination of the timing of the rainy seasons proved difficult in the study area and the most 

appropriate method to capture the rainy seasons was explored in this study. Although the 

timing is a frequently mentioned crucial factor in the literature (Asfaw et al. 2018; Mekonnen et 

al. 2018), few studies have comprehensively assessed it with the inclusion of perception data 

so far. Particularly the cessation of the rainy seasons has hardly been explored in this context. 

Considering the focus on farmers’ perceptions, the approach with a threshold-based onset 

definition and an anomaly-based cessation definition was the most expedient in this study. 

Only in a few years, the onset and offset determination of the rainy seasons produced 

unsatisfactory results such as rainy season durations of less than five days, which mainly 

concerned drought years. However, working with the rainy seasons determined through onset 

and cessation calculations for all indices would have led to several errors in the analysis as is 

evident in the results for duration and dry spells.  

For example, since the belg season in 1999 was determined through a singular rainfall event, 

of course, no dry spells could be found in that year. As the results for SRA showed, belg rains 

in 1999 were almost completely absent. When looking at the total rainfall and rainy days index 

for this year, for example in the BO kebele, the total rainfall between February and May was 

95 mm falling over the course of nine days, a third of which can be attributed to the single 

event that determined the onset. The remainder of the season was characterized by singular, 

less intense rainfall events with seven or eight, sometimes even more than 20 dry days in 

between. These dry spells are not captured in the results since cessation was determined 

before the isolated rainfall events occurred. While this is certainly an extreme example, it 

illustrates quite well that the results of the duration and dry spell indices must be interpreted in 

the context of the other indices. 

Another possible way the duration and dry spell indices can be influenced through the onset 

and offset determination is the problem of early onsets through the threshold method (figure 

7). For example, in the year 1983, the BO kebele received a lot of rain in belg. During two days 

in late February, it rained about 20 mm which was determined as the onset of the rainy season 
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through the threshold method. Until late March, the kebele received another 39 mm of rain 

during two rainfall events lasting two to four days with eight and ten dry days in between the 

respective rainfall events. Only then, the area received consistent rainfall of 102 mm over a 

period of about three weeks. Until mid-May, there were again several isolated rainy days with 

four to ten dry days in between and in the last 19 days of May, the area received another 131 

mm of consistent rainfall. Only after that, the cessation of belg was determined by the 

calculation.  

For the dry spell indices, this results in a quite high number of total dry spell days which should 

be interpreted in the context of a very long, very wet rainy season and the results of the average 

dry spell length and CDD. To illustrate the difference between these example years, the belg 

season including the determined onset and offset calculations are illustrated in figure 13. 

Particularly the extreme events and intensity indices, which are not primarily influenced by or 

dependent on the timing of the seasons, benefited from using the monthly rainy season 

definition. The difficult onset and offset determination for belg was also mirrored in the interview 

data: respondents reported a complete failure of belg rains in some years. These years could 

Figure 13 Belg season in a wet and a dry example year in the kebele using only belg (Adej) 
for cropping. Orange dots symbolize the determined onset and cessation of the rainy 
season. 
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be identified through the SRA results and they also proved to be the years where the 

determined belg onset and offset were within a week from each other. 

The Mann-Kendall trend test was performed for two annual indices and twelve seasonal 

indices for the respective kebele groups. Altogether, the results from the MK test include 54 

trend analyses. Only seven showed statistically significant trends at the 95% confidence 

interval. Figure 14 shows a summary of all statistically significant trends and increasing 

variabilities in contrast with a simplified version of farmers’ perceptions.  

The kebele using only belg for cropping is affected by the increasingly late onset of the rain 

and less rainfall overall. The onset of belg has moved from mid to late February into mid-March 

Figure 14 Summary of the results. Dry spells include CDD, avgdsl and totdsl. Extreme events include 
Rx1day, R95p and R99p. The indicator for intensity is SDII. Rainfall indicators were marked as 
increasing or decreasing when there was a statistically significant trend at the 95% confidence interval 
found in the MK test. Rainfall indicators were marked as more variable when CV consistently increased 
in at least the three timesteps since 1991. For dry spells and extreme events, this is considered true 
when it is true for one index in the respective category. Farmers’ perceptions were coded as more 
variable when the indicator was described as “unpredictable” or “increasingly uncertain”, when answers 
on an indicator were contradictory in a kebele group, they do not appear in this figure. 
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over the 37 years observed. These results are consistent with the literature, as the later onset 

and decreasing amounts of belg rain were previously observed in the study area (Alemayehu 

and Bewket 2017; Mekonen and Berlie 2020; Rosell 2011). The results from the interview 

analysis reflect these changes: farmers perceived belg to start later, to be increasingly 

unpredictable and rainfall amounts to be declining.  Unpredictability was coded as increasing 

variability, which was often mentioned in the context of belg onset. Although the onset has 

been very variable throughout the study period, CV values have decreased since the 1990s. 

CV has also decreased for rainfall amounts. When respondents mention unpredictability, this 

could also be reflected in the later onset of the rain since farmers’ agricultural decisions depend 

on the timing of the rain and the changing onset will certainly affect the respondent’s cropping 

schedule. When looking at the rainfall indices, where variability has increased since the 1990s, 

only three out of twelve concern the BO kebele (figure 15). They are total dry spell length, belg 

duration and the frequency of very wet days (R95p). CV and standard deviations for the 

extreme events indices R95p and R99p are extremely high and should be interpreted with care 

as they might just be statistical noise. Since duration and total dry spell length rely on the 

Figure 15 All indices where coefficient of variation (CV) has increased at least since the 1990s for each 
kebele group. In the BK kebeles, all increases in CV have been observed for kiremt rainfall. Dry spells 
include avgdsl and totdsl. Extreme events include Rx1day, R95p and R99p. 
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calculated onset and cessation dates and there were more dry belg years since the 1990s, as 

the SRA results have shown, the increase in variability in these two indices might be caused 

by methodological issues rather than an actual increase. Thus, it is possible, that belg rains, 

although they have always been highly variable, have not experienced an increase in 

variability.  

The later onset of belg will certainly delay the growing period. As a result, the farmers reported 

crops being immature by the time the stronger kiremt rains start. At the high altitude and steep 

slopes in this part of the study area, the strong rains can lead to crop loss through erosion or 

hail (Groth et al. 2020; Hermans and Garbe 2019). The perception of increasingly uncertain 

rainfall may also be expressed in the increasing variability of belg duration and the total dry 

spell length. Belg-dependent farmers have previously been identified as very vulnerable to 

changing rainfall (Rosell 2011) and limited irrigation access exacerbates this problem. The 

interview data and Hermans and Garbe (2019) showed that these farmers are very dependent 

on livestock-sale to generate income in case of a failed harvest. This high dependency on 

livestock results in an increased vulnerability to falls in prices. During the 2015 drought, 

decreasing livestock prices were reported in the study area (Menghistu et al. 2018). This will 

put further pressure on the farmers’ livelihoods. 

The kebeles using both cropping seasons are also affected by the later onset of belg as the 

trend analysis has shown. The increase in rainy days in annual data and seasonally for kiremt 

describes the same development. Although not statistically significant at the 95% confidence 

interval, rainfall amounts during kiremt have declined since the 1990s and so has rainfall 

intensity (SDII), i.e. there is less rainfall spread over more rainy days. The 1980s were an 

exceptionally dry period for kiremt rains and may lead to distortions in the statistics (Bewket 

and Conway 2007). The frequency of very wet days occurring in these kebeles has also 

declined over the period of observation. In these kebeles, rainfall has become less, but not 

significantly less intense and heavy rainfall events have become less frequent during kiremt. 

Increasing variability was only observed in kiremt indices (figure 15). The average length of 

dry spells has become more variable. Although dry spells are not mentioned frequently by 

respondents, an earlier cessation of kiremt rains is. The MK test results have shown that the 

end of kiremt is later, although not significantly later. Considering the 1980s are an outlier in 

the rainfall analysis, the cessation of kiremt can be described as largely stable. The increasing 

variability of average dry spell length may be expressed in the perception of earlier cessation 

since farmers may equate crop failure as a result of dry spells with the cessation of rainfall. All 

other indices with increasing variability since the 1990s in this kebele group concern extreme 

events and intensity: R99p, Rx1day and SDII. R95p in this kebele group shows a statistically 

significant decrease and extreme event frequency and intensity have become more variable. 
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The perceived increase in extreme events may be expressed in the increasing variability of 

these rainfall indices. 

Farmers in these kebeles had the least dire perception of their current quality of life. The 

kebeles using belg and kiremt for cropping are also those where some farmers have access 

to irrigation systems. Irrigation access has already been mentioned as shaping perceptions of 

rainfall change, since dependency on rainfall is reduced (Niles and Mueller 2016). It was 

evident in the interview data, that the farmers without irrigation access were very affected by 

the later belg onset, while those who were able to irrigate their fields mentioned that cropping 

during belg without irrigation would be impossible. The BK are identified as kebeles with low 

land degradation (table 1). That and the irrigation access considered, it is possible that farmers 

in these kebeles have it easier to mitigate the effects of changing rainfall. There is also the 

possibility of compensating a failed harvest in one season with the harvest of the other, as was 

mentioned by some respondents. Thus, they perceive their overall situation as better than 

farmers in the other kebele groups. 

In the kebeles using only kiremt for cropping, the only statistically significant trend shown in 

the MK test was increasing rainfall amounts during kiremt. According to Sen’s slope estimator, 

these kebeles received 6.17 mm more rain every year. Interestingly, farmers perceived the 

opposite phenomenon: they felt it had been raining less. The severe drought in 2015 may have 

influenced this perception, since extreme and more recent events have been shown to be 

extraordinarily relevant in shaping people’s perception of environmental change (Debela et al. 

2015; Simelton et al. 2013). However, as SRA results showed, the two years between the 

drought and data collection were some of the wettest years in the period of observation. 

In the KO kebeles, the most variability increases since the 1990s have occurred (figure 15). 

The duration of kiremt has become more variable. Farmers in this kebele group perceived a 

shorter rainy season, particularly due to earlier cessation of kiremt. While this could not be 

confirmed through the rainfall analysis, the increasingly variable duration of the season may 

be expressed in this perception. Farmers dependent on rainfed agriculture rely on relatively 

stable and predictable rainfall patterns in their decision-making process (MacLeod 2018; 

Simelton et al. 2013). Thus, more variable rainy season duration can affect farmers’ perception 

of the season. 

The other indices showing increasing variability in the last 27 years of the period of observation 

are all concerned with extreme events and rainfall intensity: R99p, R95p, Rx1day and SDII, 

i.e. rainfall intensity and the intensity and frequency of extreme events have become more 

variable. However, due to some extremely high CV values, these developments may simply 

show statistical noise. Farmers in these kebeles gave heterogenous answers regarding the 

development of extreme events in their villages. There was agreement regarding the negative 
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impacts of heavy rainfall events, e.g. soil erosion or gully formation, becoming more severe. 

The increasingly variable frequency and intensity of extreme events may be expressed in some 

respondents’ perceptions, however, the overall picture is very heterogenous. As Adimassu et 

al. (2014) have previously pointed out, although rainfall may have increased, deteriorating soil 

conditions can be exacerbated by droughts, raising variability in crop production despite higher 

inputs and stagnating productivity. Also, the interview data suggests, that the impacts of heavy 

rainfall events have become more severe because of land degradation. While this study does 

not provide any information on the conditions of the soil, it is remarkable that two out of the 

three kiremt only kebeles were identified as areas with high land degradation in the site 

selection process (table 1). After all, increasing top soil or gully erosion also depends on land 

management and agricultural activities (Nyssen et al. 2004) and this study is unable to provide 

information on the change in quality of the soil.  

Overall, the interview analysis posed a great challenge, since some respondents did not 

separate between phenomena that were assessed separately in the rainfall analysis, e.g. 

equating shorter rainy seasons with less rain. Other aspects, for example dry spells and rainy 

days, were almost never mentioned in the interviews. As a result, some changes in rainfall 

perceived by local farmers may be expressed in different indices in the rainfall analysis. The 

importance of different climate reference scales used by farmers and through meteorological 

analysis is evident (Debela et al. 2015; Howe et al. 2014). Also, the concept of rainfall variability 

may be difficult to understand for farmers and would require a more detailed explanation in 

order to collect robust perception data (Madhuri and Sharma 2020). 

Narratives about changing rainfall in local communities can manifest potentially inaccurate 

perceptions of change. International aid organizations, extension workers and political 

institutions in the area focus strongly on abnormal rainfall and extraordinary drought (Meze-

Hausken 2004). As rainfall is largely seen as something that cannot be influenced locally, it is 

easier to point to it as the cause of various agricultural problems rather than addressing highly 

conflict prone issues such as land degradation or land scarcity (Ege 2017). Soil erosion and 

land degradation are perceived as less of a risk than rainfall change by the small-scale farmers. 

There may be simplifying mechanisms leading to this perception: rainfall is perceived as the 

cause of declining yields as farmers are unable to capture the complexity of the situation. 

Group dynamics, institutional, psychological, social and cultural processes can amplify this 

perception (Kasperson et al. 1988). However, it is difficult to assess these developments 

through a language barrier (Marx et al. 2007; Roncoli 2006). 
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7 Conclusions 

Rainfall variability and rainfall trends in six kebeles in South Wollo were analyzed at the local 

level using CHIRPS. The high spatial and temporal resolution of the dataset made a detailed 

assessment of different aspects of rainfall in the study area possible. During the lighter belg 

season, rainfall is far more variable, both in terms of timing and amounts, than during the main 

rainy season in the summer months. 

The major changes in rainfall in the study area between 1981 and 2017 are 

(1) the increasingly late onset and lower rainfall amounts during belg, 

(2) the increasing rainfall amounts in kiremt in the kebeles using only kiremt for cropping, 

(3) the increasing number of rainy days and decreasing frequency of heavy rainfall events in 

the kebeles using both cropping seasons and 

(4) increasingly variable intensity and frequency of extreme events and intensity of rainfall 

during kiremt. 

For the small rainy season, these results are largely consistent with small scale farmers’ 

perception of rainfall. For kiremt rains, farmers perceived mainly changes in the timing of the 

rain, which was not evident from the rainfall analysis. The perceived changes may be 

expressed in different metrics in the rainfall analysis such as the variability of dry spells. Other 

factors such as changes in soil fertility, increasing population or changing needs for water may 

also come into play. Rainfall amounts are not the primary indicator for rainfall change as 

perceived by small-scale farmers. They perceive rainfall as it relates to their agricultural 

activities which are mainly determined by the timing and distribution of the rainfall. Confusion 

about planting dates can lead to crop loss and higher dependency on food aid. 

When collecting data on perceptions of environmental change, different reference scales of 

climate indicators should be incorporated into survey design. Drought monitoring and 

forecasting as well as advice by extension workers or aid organizations should strongly focus 

on agricultural calendars and growing periods. A crop-specific assessment of rainfall needs is 

advisable when comparing meteorological data and farmers’ perceptions. 
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Annex 

A Tables with mean (x̅), standard deviation (σ) and coefficient of variation (CV) results. Indices 

where CV has increased since at least 1991 are marked in bold font. 

Annual Indices 

   1981-1990 1991-2000 2001-2010 2011-2017 

RR BO x ̅ 1148.38 1311.87 1198.55 1225.29 
  σ 201.70 181.30 153.41 271.51 
  CV 0.18 0.14 0.13 0.22 

 BK x ̅ 1005.12 1140.91 1019.07 1042.72 
  σ 155.50 123.79 105.72 201.79 
  CV 0.15 0.11 0.10 0.19 

 KO x ̅ 939.18 1084.57 987.57 1040.38 
  σ 150.21 134.47 123.07 207.05 
  CV 0.16 0.12 0.12 0.20 

rd BO x ̅ 73.60 69.00 67.10 76.00 
  σ 20.55 9.45 9.01 9.40 
  CV 0.28 0.14 0.13 0.12 

 BK x ̅ 63.25 66.65 66.35 71.21 
  σ 12.96 8.11 6.80 7.04 
  CV 0.20 0.12 0.10 0.10 

 KO x ̅ 69.40 69.90 66.90 71.43 
  σ 15.02 6.55 9.30 7.48 
  CV 0.22 0.09 0.14 0.10 

 

Belg 

   1981-1990 1991-2000 2001-2010 2011-2017 

RR BO x ̅ 301.01 243.34 214.53 227.71 
  σ 80.84 88.12 67.69 59.14 
  CV 0.27 0.36 0.32 0.26 

 BK x ̅ 323.56 262.39 236.23 260.12 
  σ 52.52 101.58 66.37 53.35 
  CV 0.16 0.39 0.28 0.21 

rd BO x ̅ 22.40 15.30 14.10 17.29 
  σ 10.71 5.87 2.69 3.86 
  CV 0.48 0.38 0.19 0.22 

 BK x ̅ 20.95 15.20 15.65 18.07 
  σ 7.60 5.75 2.86 1.54 
  CV 0.36 0.38 0.18 0.09 

onset BO x ̅ 52.00 60.90 57.20 76.43 
  σ 13.70 18.77 12.88 15.31 
  CV 0.26 0.31 0.23 0.20 

 BK x ̅ 49.65 58.70 57.65 71.64 
  σ 15.72 20.73 15.85 13.00 
  CV 0.32 0.35 0.27 0.18 

offset BO x ̅ 111.60 115.20 102.70 116.29 
  σ 32.18 23.73 27.18 25.10 
  CV 0.29 0.21 0.26 0.22 

   continued on next page 
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   1981-1990 1991-2000 2001-2010 2011-2017 

offset BK x ̅ 121.90 106.45 105.60 125.93 
  σ 22.79 30.83 21.55 20.92 
  CV 0.19 0.29 0.20 0.17 

dur BO x ̅ 60.60 55.30 46.50 40.86 
  σ 29.79 32.49 31.48 29.66 
  CV 0.49 0.59 0.68 0.73 

 BK x ̅ 73.25 48.75 48.95 55.29 
  σ 22.43 36.49 24.86 23.68 
  CV 0.31 0.75 0.51 0.43 

cdd BO x ̅ 16.80 13.90 14.11 16.33 
  σ 9.30 7.46 8.25 8.57 
  CV 0.55 0.54 0.58 0.52 

 BK x ̅ 18.90 19.25 12.95 17.29 
  σ 7.81 9.96 5.39 9.79 
  CV 0.41 0.52 0.42 0.57 

totdsl BO x ̅ 39.60 40.70 35.30 28.86 
  σ 23.37 24.17 25.43 23.72 
  CV 0.59 0.59 0.72 0.82 

 BK x ̅ 51.35 36.45 36.70 38.43 
  σ 20.03 29.59 19.87 19.01 
  CV 0.39 0.81 0.54 0.49 

avgdsl BO x ̅ 8.24 10.64 10.00 9.73 
  σ 3.42 6.13 6.67 5.27 
  CV 0.41 0.58 0.67 0.54 

 BK x ̅ 9.42 10.06 7.91 9.87 
  σ 3.10 3.56 2.11 5.07 
  CV 0.33 0.35 0.27 0.51 

Rx1day BO x ̅ 47.48 50.97 45.19 42.74 
  σ 22.57 12.89 20.55 16.03 
  CV 0.48 0.25 0.45 0.37 

 BK x ̅ 47.63 50.26 40.55 45.01 
  σ 10.45 14.71 7.72 7.01 
  CV 0.22 0.29 0.19 0.16 

R99p BO x ̅ 2.04 1.27 1.15 0.00 
  σ 4.95 2.83 2.44 0.00 
  CV 2.43 2.23 2.12 --- 

 BK x ̅ 1.49 4.28 0.00 0.73 
  σ 2.46 6.48 0.00 1.25 
  CV 1.65 1.51 --- 1.71 

R95p BO x ̅ 7.08 7.12 4.70 4.60 
  σ 8.72 6.13 4.50 4.78 
  CV 1.23 0.86 0.96 1.04 

 BK x ̅ 5.77 8.37 6.45 4.75 
  σ 5.85 8.39 5.35 2.47 
  CV 1.01 1.00 0.83 0.52 

SDII BO x ̅ 15.96 16.16 15.02 13.50 
  σ 7.34 3.88 3.07 3.34 
  CV 0.46 0.24 0.20 0.25 

   continued on next page 
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   1981-1990 1991-2000 2001-2010 2011-2017 

 BK x ̅ 17.14 19.41 15.80 14.73 
  σ 4.94 8.24 3.62 3.25 
  CV 0.29 0.42 0.23 0.22 

 

Kiremt 

   1981-1990 1991-2000 2001-2010 2011-2017 

RR KO x ̅ 627.36 809.99 743.22 769.20 
  σ 172.47 159.28 101.24 204.63 
  CV 0.27 0.20 0.14 0.27 

 BK x ̅ 627.70 808.76 716.72 735.71 
  σ 174.87 156.81 85.46 194.64 
  CV 0.28 0.19 0.12 0.26 

rd BO x ̅ 41.00 45.70 44.13 46.86 
  σ 11.80 8.13 7.58 9.07 
  CV 0.29 0.18 0.17 0.19 

 BK x ̅ 35.55 43.60 42.05 45.00 
  σ 10.50 9.18 6.26 7.61 
  CV 0.30 0.21 0.15 0.17 

onset KO x ̅ 187.90 179.87 179.97 185.86 
  σ 10.17 13.46 10.34 8.49 
  CV 0.05 0.07 0.06 0.05 

 BK x ̅ 187.80 182.00 180.60 187.71 
  σ 11.13 11.90 10.50 8.57 
  CV 0.06 0.07 0.06 0.05 

offset KO x ̅ 235.87 249.47 247.53 251.48 
  σ 22.39 5.38 3.98 9.33 
  CV 0.09 0.02 0.02 0.04 

 BK x ̅ 239.20 253.35 248.80 257.93 
  σ 23.19 10.92 6.05 11.71 
  CV 0.10 0.04 0.02 0.05 

dur KO x ̅ 48.97 70.60 68.57 66.62 
  σ 24.38 11.21 12.68 12.67 
  CV 0.50 0.16 0.18 0.19 

 BK x ̅ 52.40 72.35 69.20 71.21 
  σ 25.67 8.57 14.09 12.54 
  CV 0.49 0.12 0.20 0.18 

cdd KO x ̅ 6.85 7.63 10.07 7.86 
  σ 2.09 4.05 6.25 4.05 
  CV 0.30 0.53 0.62 0.51 

 BK x ̅ 7.67 9.70 10.10 8.43 
  σ 4.90 4.94 8.87 4.00 
  CV 0.64 0.51 0.88 0.48 

totdsl KO x ̅ 13.73 23.80 21.27 17.71 
  σ 9.58 15.35 11.83 7.85 
  CV 0.70 0.65 0.56 0.44 

   continued on next page 
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   1981-1990 1991-2000 2001-2010 2011-2017 

 BK x ̅ 19.10 25.70 21.55 21.71 
  σ 12.40 14.87 12.64 7.21 
  CV 0.65 0.58 0.59 0.33 

avgdsl KO x ̅ 5.86 5.73 5.74 6.50 
  σ 1.63 2.13 1.56 4.19 
  CV 0.28 0.37 0.27 0.64 

 BK x ̅ 5.59 5.36 5.37 5.88 
  σ 1.70 1.31 1.80 2.54 
  CV 0.30 0.24 0.33 0.43 

Rx1day KO x ̅ 45.48 51.10 53.01 45.29 
  σ 9.65 4.54 9.06 11.59 
  CV 0.21 0.09 0.17 0.26 

 BK x ̅ 57.04 55.53 50.85 47.08 
  σ 11.27 9.55 10.14 15.19 
  CV 0.20 0.17 0.20 0.32 

R99p KO x ̅ 0.96 1.46 1.14 1.16 
  σ 1.88 1.34 1.18 2.26 
  CV 1.96 0.92 1.03 1.94 

 BK x ̅ 1.83 0.91 1.21 0.61 
  σ 1.66 1.11 1.74 1.05 
  CV 0.91 1.22 1.44 1.71 

R95p KO x ̅ 5.11 7.09 5.12 3.09 
  σ 4.12 3.08 2.57 3.82 
  CV 0.81 0.43 0.50 1.24 

 BK x ̅ 8.44 5.78 4.17 3.56 
  σ 7.04 3.21 2.25 4.74 
  CV 0.83 0.56 0.54 1.33 

SDII KO x ̅ 16.07 17.75 17.06 16.42 
  σ 4.59 1.30 1.72 3.08 
  CV 0.29 0.07 0.10 0.19 

 BK x ̅ 18.68 18.72 17.19 16.27 
  σ 5.10 1.37 1.65 3.35 
  CV 0.27 0.07 0.10 0.21 

 

B Tables with results of the Mann-Kendall trend test with Kendall’s tau (positive or negative 

trend), a two-sided p-value (hypothesis testing, significant trends at the 95% confidence 

interval are marked in bold font) and Sen’s Slope estimator (change per unit time) 

Annual Indices 

  tau p Sen’s Slope 

RR BO 0.1201 0.3015 2.5359 
 BK 0.0390 0.7437 0.8466 
 KO 0.1231 0.2894 3.0321 

rd BO 0.0530 0.6562 0.1188 
 BK 0.2293 0.0482 0.3333 
 KO 0.0332 0.7835 0.0423 
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Belg 

  tau p Sen’s Slope 

RR BO -0.2462 0.0330 -2.6589 
 BK -0.2222 0.0545 -2.3490 

rd BO -0.1249 0.2934 -0.0801 
 BK -0.0640 0.5911 -0.0359 

onset BO 0.2736 0.0185 0.6883 
 BK 0.2805 0.0155 0.5526 

offset BO -0.0136 0.9166 -0.0623 
 BK 0.0030 0.9896 0.0000 

dur BO -0.2121 0.0688 -0.7454 
 BK -0.1687 0.1464 -0.7670 

cdd BO -0.0650 0.5983 -0.0625 
 BK -0.0903 0.4594 -0.0952 

totdsl BO -0.1402 0.2287 -0.3586 
 BK -0.1293 0.2662 -0.4302 

avgdsl BO -0.0153 0.9094 0.0000 
 BK -0.0411 0.7443 -0.0185 

Rx1day BO -0.0270 0.8240 -0.0741 
 BK -0.1081 0.3531 -0.1647 

R99p BO -0.0793 0.5664 0.0000 
 BK -0.1332 0.3136 0.0000 

R95p BO -0.0592 0.6349 0.0000 
 BK 0.0046 0.9791 0.0000 

SDII BO -0.0360 0.7636 -0.0264 
 BK -0.1141 0.3266 -0.0675 

 

Kiremt 

  tau p Sen’s Slope 

RR BK 0.2012 0.0819 4.4125 
 KO 0.2643 0.0221 6.1692 

rd BK 0.2384 0.0410 0.2981 
 KO 0.0995 0.3950 0.1350 

onset BK -0.0182 0.8855 -0.0109 
 KO -0.0935 0.4247 -0.0976 

offset BK 0.2071 0.0750 0.2857 
 KO 0.2155 0.0632 0.2546 

dur BK 0.1873 0.1074 0.3964 
 KO 0.2078 0.0731 0.4452 

cdd BK 0.0258 0.8378 0.0000 
 KO 0.0660 0.5850 0.0303 

totdsl BK 0.0469 0.6945 0.0590 
 KO 0.0932 0.4249 0.1333 

avgdsl BK 0.0017 1.0000 0.0000 
 KO -0.0325 0.8004 -0.0022 

  continued on next page 
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  tau p Sen’s Slope 

Rx1day BK -0.2222 0.0545 -0.3576 
 KO 0.0871 0.4560 0.1243 

R99p BK -0.1883 0.1313 0.0000 
 KO 0.0349 0.7845 0.0000 

R95p BK -0.2926 0.0115 -0.1429 
 KO -0.0918 0.4325 -0.0423 

SDII BK -0.2162 0.0614 -0.0829 
 KO -0.0420 0.7240 -0.0106 
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